Antarctic wildlife at risk from human derived E. coli

May 25, 2016
Credit: Dr Michelle Power

Human sewage disposal in Antarctica presents a risk of introducing non-native bacterial species, specifically E. coli, into endemic Antarctic wildlife, potentially affecting its diversity and evolution, a new research project led by Macquarie University has found.

Funded by an Australian Antarctic Science Grant from the Australian Antarctic Division, the research has detected genes in seals, penguins and invertebrates that are commonly associated with from humans.

At the invitation of the Australian Antarctic Division, Dr Michelle Power from Macquarie University joined the field team at Davis research station to examine how sustained human waste discharge from research stations has the potential to affect the diversity and evolution of native Antarctic microbes, as well as introduce disease to wildlife in the ecosystem.

With most research stations located on the coast of Antarctica, the research provides scientific evidence to support development of improved regulations for human waste disposal.

"Some of the identified strains that we have detected in seals are known to cause disease in humans and birds. Antibiotic resistance genes, currently a major global issue, were discovered in many of the strains we tested. The antibiotic resistance genes were not detected in penguins or seals but were found in an Antarctic shellfish species which filters the water for its food," said Dr Power.

As part of its commitment to protecting the Antarctic environment, the Australian Antarctic Division undertook a larger study to assess the environmental impact of sewage discharge in Antarctica in 2009/10.

The study included the collection of marine sediments at various coastal points within a 10 kilometre radius, in addition to faecal samples from southern elephant seals, Adelie penguins and Weddell seals. Divers also collected fish, heart urchins, Antarctic soft-shelled clam and conducted detailed surveys of seabed communities as part of the larger study.

Guidelines currently in place for treatment of sewage, established by the Antarctic Treaty system, allow research stations to dispose of untreated sewage directly into the sea – within certain parameters. These include conditions that allow for its rapid dilution and dispersal into the marine environment. Research led by Australian Antarctic Division marine scientist, Dr Jonny Stark, shows that such conditions are unlikely to occur at most Antarctic stations.

Australian Antarctic Division Chief Scientist, Dr Gwen Fenton, said the Division partnered with research and industry to undertake a major engineering project to design and upgrade wastewater treatment for use in Antarctic conditions in response to the combined results of the studies.

"A secondary treatment plant was commissioned at Davis research station in December 2015 and an advanced level treatment plant is due to be installed in 2016/17. This will convert effluent into some of the cleanest water in the world. Both Casey and Mawson research stations have a secondary wastewater treatment plant, with both scheduled for upgrade," Dr Fenton said.

"With more than 30 nations operating in Antarctica, and around 4000 people living in Antarctic research stations during the summer months, the potential impact of their presence to the surrounding ecosystem cannot be underestimated," continued Dr Power.

The comprehensive steps taken by Australia to understand and address the environmental impacts of wastewater discharge at Australia's research stations represent Antarctic best practice, and reinforce Australia's international leadership in the fields of Antarctic science, operations and environmental management.

Wastewater management is recognised by all national Antarctic programs to be a complex issue, and a wide range of technologies are in use across Antarctic stations. Further steps to prevent the introduction of non-native species and disease will be discussed at the next Antarctic Treaty Consultative Meeting will be held in Chile later this month.

"There is currently no acceptable measure of impact of untreated sewage disposal in Antarctica and I would argue that simple genetic tools can, and should be used to determine the extent of gene pollution across Antarctica," continued Dr Power.

Explore further: Northern invaders threaten Antarctic marine life

More information: Michelle L. Power et al. Escherichia coli out in the cold: Dissemination of human-derived bacteria into the Antarctic microbiome, Environmental Pollution (2016). DOI: 10.1016/j.envpol.2016.04.013

Related Stories

Northern invaders threaten Antarctic marine life

May 24, 2016

An international study led by The Australian National University (ANU) has found evidence that marine life can easily invade Antarctic waters from the north, and could be poised to colonise the rapidly-warming Antarctic marine ...

Australia's Antarctic runway melting

October 24, 2012

Australia said Wednesday it was searching for a new aircraft landing site for planes supplying its three bases in Antarctica because the current runway is melting.

Recommended for you

Concurrent hot and dry summers more common in future: study

June 28, 2017

A combination of severe drought and a heatwave caused problems for Russia in the summer of 2010: fires tore through forests and peat bogs. Moscow was shrouded in thick smog, causing many deaths in the local population. At ...

2020 deadline to avert climate catastrophe: experts

June 28, 2017

Humanity must put carbon dioxide emissions on a downward slope by 2020 to have a realistic shot at capping global warming at well under two degrees Celsius, the bedrock goal of the Paris climate accord, experts said Wednesday.

Climate change impacts Antarctic biodiversity habitat

June 28, 2017

Ice-free areas of Antarctica - home to more than 99 per cent of the continent's terrestrial plants and animals - could expand by more than 17,000km2 by the end of this century, a study published today in Nature reveals.

The common insecticide poisoning our rivers and wetlands

June 28, 2017

Urban streams and wetlands play an important role in the proper functioning of our cities. They protect our houses from floods, provide green spaces for recreation, trap and breakdown pollutants and provide valuable habitats ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.