New Quantum Dot Transistor Counts Individual Photons

October 11, 2007
New Quantum Dot Transistor Counts Individual Photons
NIST´s modified field-effect transistor can count single photons, or particles of light. When light enters through the transmission window (see electron micrograph of top of device), it penetrates the gallium arsenide absorbing layer and separates electrons from the holes they formerly occupied. Quantum dots (red dots) trap the positively charged holes, while electrons flow into the channel (green Xs). By measuring the channel current, researchers can determine the number of photons absorbed. Credit: NIST

A transistor containing quantum dots that can count individual photons (the smallest particles of light) has been designed and demonstrated at the National Institute of Standards and Technology.

The semiconductor device could be integrated easily into electronics and may be able to operate at higher temperatures than other single-photon detectors—practical advantages for applications such as quantum key distribution (QKD) for “unbreakable” encryption using single photons.

The NIST device, described in a new paper, can accurately count 1, 2 or 3 photons at least 83 percent of the time. It is the first transistor-based detector to count numbers of photons; most other types of single-photon detectors simply “click” in response to any small number of photons.

Counting requires a linear, stepwise response and low-noise operation. This capability is essential for advanced forms of precision optical metrology—a focus at NIST—and could be used both to detect photons and to evaluate single-photon sources for QKD. The new device also has the potential to be cooled electronically, at much higher temperatures than typical cryogenic photon detectors.

Dubbed QDOGFET, the new detector contains about 1,000 quantum dots, nanoscale clusters of semiconductors with unusual electronic properties. The NIST dots are custom-made to have the lowest energy of any component in the detector, like the bottom of a drain. A voltage applied to the transistor produces an internal current, or channel. Photons enter the device and their energy is transferred to electrons in a semiconductor “absorbing layer,” separating the electrons from the “holes” they formerly occupied.

As each photon is absorbed, a positively charged hole is trapped by the quantum dot drain, while the corresponding electron is swept into the channel. The amount of current flowing in the channel depends on the number of holes trapped by quantum dots. By measuring the channel response, scientists can count the detected photons. NIST measurements show that, on average, each trapped hole boosts the channel current by about one-fifth of a nanoampere. The detector has an internal quantum efficiency (percentage of absorbed photons that result in trapped holes) of 68 ± 18 percent, a record high for this type of photon detector.

The QDOGFET currently detects single photons at wavelengths of about 800 nanometers. By using different semiconductor materials, NIST researchers hope to make detectors that respond to the longer near-infrared wavelengths used in telecommunications. In addition, researchers hope to boost the external quantum efficiency (percentage of photons hitting the detector that are actually detected), now below 10 percent, and operate the device at faster speeds.

The research is supported in part by the Disruptive Technology Office. The authors include one from Los Alamos National Laboratory and one from Heriot-Watt University, Edinburgh, UK.

Citation: E.J. Gansen, M.A. Rowe, M.B. Greene, D. Rosenberg, T.E. Harvey, M.Y. Su, R.H. Hadfield, S.W. Nam and R.P. Mirin. Photon-number-discriminating detection using a quantum dot, optically gated, field-effect transistor. Nature Photonics. 1, 585 - 588 (2007). Published on-line Oct. 1, 2007.

Source: NIST

Explore further: A curious quirk brings organic diode lasers one step closer

Related Stories

A curious quirk brings organic diode lasers one step closer

November 20, 2017

Since their invention in 1962, semiconductor diode lasers have revolutionized communications and made possible information storage and retrieval in CDs, DVDs and Blu-ray devices. These diode lasers use inorganic semiconductors ...

Physicists mix waves on superconducting qubits

November 14, 2017

Physicists from the Moscow Institute of Physics and Technology (MIPT) and Royal Holloway, University of London, have demonstrated an effect known as quantum wave mixing on an artificial atom. Their results, published in the ...

New molecules for OLEDs and pharmaceuticals

November 14, 2017

Chemists from Ural Federal University (UrFU, Ekaterinburg) have suggested a new technique for synthesizing thiophene derivatives and studied their fluorescent properties experimentally as well as theoretically. Many organic ...

Researchers tunnel to a new light source

November 17, 2017

With concerns over moving to a clean energy platform worldwide with electric vehicles and renewables, wasted energy is a factor as important as the amount of green energy produced. Thus, solid-state lighting based upon light-emitting ...

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.