How to enlarge 2-D materials as single crystals

What makes something a crystal? A transparent and glittery gemstone? Not necessarily, in the microscopic world. When all of its atoms are arranged in accordance with specific mathematical rules, we call the material a single ...

Strain enables new applications of 2-D materials

Superconductors' never-ending flow of electrical current could provide new options for energy storage and superefficient electrical transmission and generation, to name just a few benefits. But the signature zero electrical ...

Hard carbon nanofiber aerogel becomes superelastic

Conductive and compressible carbon aerogels are useful in a variety of applications. In recent decades, carbon aerogels have been widely explored by using graphitic carbons and soft carbons, which show advantages in superelasticity. ...

Nanoscale sculpturing leads to unusual packing of nanocubes

From the ancient pyramids to modern buildings, various three-dimensional (3-D) structures have been formed by packing shaped objects together. At the macroscale, the shape of objects is fixed and thus dictates how they can ...

page 5 from 368