Twenty-two thousand trips around the planet

Oct 21, 2013 by Sarah Perrin
Credit: 2013 EPFL

Four years after its launch, Swisscube, the small satellite developed by EPFL's Space Center, is still in operation. Some of the technological choices made and considered audacious at the time have yielded valuable lessons for building future spacecraft.

The mission was supposed to last three months to one year, but now, four years later, Swisscube is still orbiting the Earth. This small Cubesat-type , measuring just 10cm by 10cm and entirely designed in Switzerland, was launched on September 23, 2009. After more than 22,000 trips around the planet, all its functions are still operational. Only one of its six solar sensors has been irreversibly damaged.

The satellite's mission was to photograph "air glow," a photoluminescence phenomenon that occurs in the upper atmosphere and is caused by the interaction between and oxygen molecules. In four years, some 250 images were produced. Even though these data are not precise enough to be studied scientifically, the Swiss space community still considers Swisscube a success.

"Its goal was above all educational," says Muriel Richard, an engineer at the Swiss Space Center and Swisscube project manager. "It allowed nearly 200 students from EPFL and the Universities of Applied Science to learn about space technology. And today, it's still valuable for current students as an extraordinary experimentation platform, with which we can, for example, check movements and altitude or test ground-based algorithms."

Put to the test

The fact that it's lasted this long proves that the satellite is robust. It confirms the wisdom of certain technological choices that were made; at the time they seemed audacious, but now, in hindsight, they have proven innovative and full of lessons that can be drawn upon for the construction of . For example, it was decided that instead of components that were certified space-quality, standard electronic components would be used; they were thus much less expensive, such as mobile phone batteries bundled into a thermally controlled, waterproof housing. An innovative system of copper mountings was developed that both secured the solar cells to the external walls, ensuring stowage during the violent shakings of launch.

"The first week is decisive," explains Richard. "If the satellite gets through it without a hitch, it's because it was truly well built, and there's a high likelihood that it will operate for years to come." Once the satellite reaches space, the electronics on board are seriously put to the test. To start with, vibrations experienced during the launch will reveal even the slightest error in soldering. The materials also undergo temperature variations that can range from -50 to 70 degrees Celsius. Solar radiation and the flow of solar particles can also easily damage systems that are insufficiently protected. And then there's always the chance of collision with the ever-increasing amount of orbiting the Earth.

Set your calendar for 2018

In fact, Swisscube has narrowly avoided impact several times. As soon as it was launched, it was quickly caught up in the train of debris created by the February 2009 collision between the commercial satellite Iridium-33 the Russian satellite Cosmos-2251. More recently, on September 11, 2013, US Air Force alerted the Swiss Space Center that its Cubesat passed less than 75 meters away from one of the 15,000 pieces of space debris more than 10cm in diameter that have been identified and are monitored from the ground by the U.S.. But it appears that Swisscube's time has not yet come. Barring an unforeseen event, Swisscube's demise has been programmed for 2018. It will be the first object captured and destroyed by CleanSpace One, the debris clean-up satellite currently under development at the Space Center.

Explore further: Pico-satellites have a new brain on board

add to favorites email to friend print save as pdf

Related Stories

Pico-satellites have a new brain on board

Sep 02, 2013

For his Master's thesis in microengineering, Louis Masson designed a new microcomputer for use in pico-satellites. His invention will improve the satellites' ability to manage complex data.

Swiss craft janitor satellites to grab space junk

Feb 15, 2012

The tidy Swiss want to clean up space. Swiss scientists said Wednesday they plan to launch a "janitor satellite" specially designed to get rid of orbiting debris known as space junk.

Swiss satellite to tackle space debris (w/ video)

Feb 16, 2012

(PhysOrg.com) -- The proliferation of debris orbiting the Earth – primarily jettisoned rocket and satellite components – is an increasingly pressing problem for spacecraft, and it can generate huge ...

420 magical seconds in space

Dec 19, 2011

(PhysOrg.com) -- A new tool to calculate the orientation of a satellite with respect to the Earth, developed by EPFL students, will be on board a European Space Agency rocket scheduled to launch in March 2012. ...

Space debris threatens ISS: report

Sep 26, 2012

The International Space Station is in danger of being hit by two pieces of debris from an old Russian satellite that had previously hit a US craft in 2009, a news report said on Wednesday.

Recommended for you

GPIM spacecraft to validate use of "green" propellant

2 minutes ago

(Phys.org) —Milestone progress is being made in readying NASA's Green Propellant Infusion Mission (GPIM) for launch in 2016, a smallsat designed to test the unique attributes of a high-performance, non-toxic, ...

Australian amateur Terry Lovejoy discovers new comet

21 hours ago

It's confirmed! Australian amateur astronomer Terry Lovejoy just discovered his fifth comet, C/2014 Q2 (Lovejoy). He found it August 17th using a Celestron C8 fitted with a CCD camera at his roll-off roof ...

Students see world from station crew's point of view

Aug 19, 2014

NASA is helping students examine their home planet from space without ever leaving the ground, giving them a global perspective by going beyond a map attached to a sphere on a pedestal. The Sally Ride Earth ...

Mars deep down

Aug 19, 2014

Scarring the southern highlands of Mars is one of the Solar System's largest impact basins: Hellas, with a diameter of 2300 km and a depth of over 7 km.

User comments : 0