Super-mini vehicles carry therapeutics and imaging agents into body with mega results

Jun 07, 2011

Measured in billionths of a meter, self-assembling nano-sized devices designed to carry drugs and imaging agents into the body are revolutionizing medicine by improving drug solubility and bio-distribution, providing a platform for combining targeting and imaging agents, and enabling membrane barriers to be crossed as well as making drug and imaging agent combination therapies possible.

Self-assembling nano devices are now enlisted in the nanomedicine revolution, a story as told by researchers from Duke University and the University of Southern California in an article in the current TECHNOLOGY & INNOVATION, Proceedings of the National Academy of Inventors.

Their report covers two classes of self-assembled, nanoscale medical delivery devices currently used to transport drugs and also imaging materials across physiological barriers that they, acting by themselves, would be unable to cross.

"Nanoscale self-assembly devices are complex structures organized from simpler subcomponents - either naturally occurring or engineered - which assume complex structures difficult to attain by chemical synthesis," said the paper's corresponding author Dr. Ashutosh Chilkoti, professor of biomedical engineering at Duke University. "Their disassociation can be triggered by external stimuli, which serve as mechanisms to release therapeutic payloads."

According to Dr. Chilkoti and his co-authors, Dr. Mingan Chen and Jonathan R. McDaniel of the Duke University Department of Biomedical Engineering, as well as Dr. J. Andrew MacKay of the University of Southern California Department of Pharmacology and Pharmaceutical Sciences, many biological events rely on structures that self-assemble or disassemble based on environmental changes or physiological needs. Such natural self-assemblies used in nanomedicine rely on multiple weak forces, such as those associated with viral capsids and proteins.

Engineered self-assemblies used in nanomedicine come in over five groups of structural shapes, including the micellar nanostructure.

"We have recently developed a novel strategy that utilizes micelles self-assembled from recombinant polypeptides after attaching doxorubicin, a cancer drug, to deliver the drug," explained Dr. Chilkoti, who is also the director of the Duke University Center for Biologically Inspired Materials and Material Systems.

According to Dr. MacKay, a co-corresponding author of the report, the stability of micelles is important to their success or failure as delivery systems.

"The stability of micelles has thermodynamic and kinetic components," he said. "All factors that influence micellar stability can be tuned at the genetic level. Thus, we believe that genetically encoded polypeptide micelles are likely to play an increasing role in the design of next generation nanoscale carriers of and ."

In their report, the authors evaluate the structural and physiochemical properties, as well as the potential applications, of each type of structure.

Explore further: Innovative strategy to facilitate organ repair

More information: http://www.ingentaconnect.com/content/cog/ti/2011/00000013/00000001

Provided by University of South Florida

5 /5 (4 votes)
add to favorites email to friend print save as pdf

Related Stories

Surgeons predict the future of nanomedicine in practice

Mar 01, 2011

A new review published in WIREs Nanomedicine and Nanobiotechnology explores how nanotechnology may provide powerful new tools that could have a marked impact on the therapeutic and diagnostic measures available to surgeo ...

Weighting cancer drugs to make them hit tumors harder

Mar 02, 2006

Scientists have devised a blueprint for boosting anti-cancer drugs' effectiveness and lowering their toxicity by attaching the equivalent of a lead sinker onto the drugs. This extra weight makes the drugs penetrate and accumulate ...

Tracking Nanomaterials In Vivo

Dec 23, 2005

Researchers at Northwestern University have been developing a toolbox of synthetic amino acids (related to building blocks of proteins) that assemble themselves into complex structures that may prove useful in drug delivery ...

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...