Study reveals how novel COVID manipulates cells to replicate

Study reveals how novel coronavirus manipulates cells to replicate
Cell culture trial shows interaction between cellular protein PCNA and SARS-CoV-2 protein M. Human protein PCNA (red) migrates from cell nucleus (blue) to cytoplasm in the presence of protein M (green). Credit: Orlando B. Scudero/ICB-USP

An article published in the journal Frontiers in Cellular and Infection Microbiology reports a study by researchers at the State University of Campinas (UNICAMP) and the University of São Paulo (USP) in Brazil showing how a human protein interacts with a SARS-CoV-2 protein, and describing one of the ways the virus that causes COVID-19 recruits cells to replicate.

In , the researchers inhibited interaction between the molecules using a drug and thereby reduced by 15–20%. They expect their findings to contribute to the development of treatments for COVID-19.

"The human protein known as PCNA [proliferating cell nuclear antigen] interacts with the SARS-CoV-2 protein M [matrix], one of the molecules that make up the virus's membrane and give it shape. The discovery itself shows one of the ways the pathogen manipulates cell function for its to proceed," said Fernando Moreira Simabuco, a professor at UNICAMP's School of Applied Sciences (FCA) in Limeira and principal investigator for the study, which was supported by FAPESP.

The group used a range of in vitro techniques to investigate how the presence of the viral protein M in the organism makes PCNA, a protein involved in DNA repair, migrate from the , where it is normally found, to the cytoplasm, a cellular region containing organelles responsible for important cell functions.

According to the researchers, this migration shows that the viral and human proteins interact, a conclusion corroborated by other methods, such as use of compounds to inhibit migration of proteins from the nucleus to the cytoplasm. In cells treated with both a specific compound for PCNA and another that inhibits migration of different proteins including PCNA, viral replication was reduced by between 15% and 20% compared with untreated .

"If we'd been thinking about treatment, perhaps this reduction wouldn't have been significant, but our main aim was to demonstrate the interaction and show that it could be a future therapeutic target," Simabuco said.

In collaboration with researchers in the Pathology Department of USP's Medical School, they analyzed samples of lung tissue obtained during autopsies of deceased COVID-19 patients.

Expression of PCNA was found to be above normal in these samples, as was expression of the protein gamaH2AX, a marker of DNA damage, reinforcing the results.

"This finding may point to yet another consequence of infection by the virus," Simabuco said.

The first author of the article is Érika Pereira Zambalde, a postdoctoral researcher at FCA-UNICAMP under Simabuco's supervision.

Protein news

The protein M is anchored, with proteins E and S, in the membrane that envelops SARS-CoV-2, and is the most abundant of its four main structural proteins, called structural because they give it shape. For this reason, it has been considered a potential target for medications and vaccines.

S, the viral spike , is well-known because it binds to the ACE receptor in , a role that has made it the target for most current COVID-19 vaccines.

The PCNA is widely studied in the context of cancer research, as exemplified by a project conducted by Simabuco at FCA-UNICAMP. Little is known about the role of PCNA in , however.

The recently published article, therefore, offers a way forward for further research on this interaction between SARS-CoV-2 and PCNA, facilitating the development of therapies. A next step would be validation of the discoveries in animal models, although this has not yet been programmed.

More information: Érika Pereira Zambalde et al, Characterization of the Interaction Between SARS-CoV-2 Membrane Protein (M) and Proliferating Cell Nuclear Antigen (PCNA) as a Potential Therapeutic Target, Frontiers in Cellular and Infection Microbiology (2022). DOI: 10.3389/fcimb.2022.849017

Provided by FAPESP

Citation: Study reveals how novel COVID manipulates cells to replicate (2022, July 18) retrieved 21 June 2024 from https://phys.org/news/2022-07-reveals-covid-cells-replicate.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Tackling cancer at ground zero with designer molecules

33 shares

Feedback to editors