Engines of change: Team recovers rare earths from electric and hybrid vehicle motors

September 30, 2015
Marion Emmert, assistant professor of chemistry, chemical engineering, and mechanical engineering at Worcester Polytechnic Institute, with the drive unit from an all-electric Chevrolet Spark vehicle. She has developed a chemical method for extracting rare earth elements from the unit's magnets. Credit: Worcester Polytechnic Institute

In an effort to help develop a sustainable domestic supply of rare earth elements and lessen the United States' dependence on China for materials that are vital to the production of electronics, wind turbines, and many other technologies, two researchers at Worcester Polytechnic Institute (WPI) have developed a method of extracting rare earths from the drive units and motors of discarded electric and hybrid cars.

With support from WPI's Center for Resource Recovery and Recycling (CR3), Marion Emmert, assistant professor of chemistry, chemical engineering, and mechanical engineering at WPI, and postdoctoral fellow H.M. Dhammika Bandara conduct research at WPI's Gateway Park in a specially equipped laboratory, one of the only such facilities of its kind in the nation.

Working there, the pair has created the novel method for processing drive units and to chemically separate rare earth elements - specifically neodymium, dysprosium, and praseodymium - from other materials used to make the devices. The goal is to recycle rare earths that would otherwise be lost in a sustainable and efficient manner.

To test the process, the WPI researchers sliced the drive unit (which contains the electric motor and other components of the drive train) of an all-electric Chevrolet Spark vehicle into several pieces and then shredded the pieces. Using a two-step chemical extraction process, they were able to separate the rare earth elements and also recover other recyclable materials, including steel chips and other useful materials from the drive units.

The researchers say the technology has the potential to be an alternative source of rare earths, which could lessen the need to import these vital elements from China, which currently supply's about 97 percent of rare earths used in manufacturing. Furthermore, since magnets containing are used in a wide range of technologies, including electric motors, , and medical imaging devices, including MRI scanners - manufacturers would be able to improve the sustainability of their products by recycling these materials.

Engines of change: Team recovers rare earths from electric and hybrid vehicle motors
WPI researchers separated rare earth elements and recovered recyclable materials from drive units.

"The fact that China has the majority of operable separation facilities in the world is a huge problem for the United States," Emmert said. "Large car manufacturers are dependent on the magnets composed of these elements for car production, so it's really critical for rare earth recovery and separation technologies to take hold here."

Emmert also noted that the United States has not invested in rare earth recovery for a long time. "In the last 20 years, the United States has lost knowledge and expertise on how to mine, recover, and separate these materials," said Emmert. "We're hoping that starts to change and that the United States becomes less dependent on foreign countries to recover rare earth elements."

WPI's Intellectual Property and Innovation department has filed a provisional patent on the recovery technology, and is beginning to market the technology in hopes of finding a licensee.

The research dates back to the spring of 2014, when WPI was named the lead institution on a $7.4 million, multi-university award from the U.S. Army that supported the development of new metallurgical methods and new lightweight alloys to help the military build more effective and durable vehicles and systems. Part of that research explored methods for extracting from ores found outside of China and for recovering those elements from recycled materials.

Emmert and Bandara's article on rare earth recycling, titled Rare Earth Recovery from End-of-Life Motors employing Green Chemistry Design Principles, was recently published in Green Chemistry.

Explore further: Critical Materials Institute rare-earth recycling invention licensed

More information: Green Chemistry, pubs.rsc.org/en/content/articl … f/2015/gc/c5gc01255d

Related Stories

Simple separation process for neodymium and dysprosium

June 9, 2015

Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer products is a promising source for these rare commodities. In the journal Angewandte Chemie, American scientists ...

The challenge of mining rare-earth materials outside China

July 29, 2015

Five years ago, the cost of rare-earth materials that are critical for today's electronics went through the roof. An export quota set by China, which mines most of the world's rare earths, caused the price run-up. Though ...

Extracting rare earth materials from consumer products

March 5, 2013

In a new twist on the state's mining history, a group of Idaho scientists will soon be crushing consumer electronics rather than rocks in a quest to recover precious materials. DOE's Ames Laboratory will lead the new Critical ...

Recycling permanent magnets in one go

September 2, 2015

Electric motors or wind turbines are driven by powerful permanent magnets. The most powerful ones are based on the rare earth elements neodymium and dysprosium. In future, a new process route realized by Fraunhofer researchers ...

Recommended for you

Scientists write 'traps' for light with tiny ink droplets

October 23, 2017

A microscopic 'pen' that is able to write structures small enough to trap and harness light using a commercially available printing technique could be used for sensing, biotechnology, lasers, and studying the interaction ...

When words, structured data are placed on single canvas

October 22, 2017

If "ugh" is your favorite word to describe entering, amending and correcting data on the rows and columns on spreadsheets you are not alone. Coda, a new name in the document business, feels it's time for a change. This is ...

Enhancing solar power with diatoms

October 20, 2017

Diatoms, a kind of algae that reproduces prodigiously, have been called "the jewels of the sea" for their ability to manipulate light. Now, researchers hope to harness that property to boost solar technology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.