Islands in yeast membrane revealed by extreme microscopy

February 5, 2018, University of Groningen
Schematic of yeast cell, showing in green-pink the eisosomal structures in which transporters (red, V-shaped) are parked when the substrate is not available for the cell. It also depicts how transporters travel from the endoplasmic reticulum (ER, light grey) to the plasma membrane (dark grey). The top left part of the cell shows trajectories of individual transporters diffusing in the plasma membrane. Credit: Frans Bianchi / University of Groningen

University of Groningen microbiologists have visualized tiny islands in the cell membrane of baker's yeast. These membrane compartments appear to store transport proteins before use. The scientists observed that these proteins move extremely slowly in the plasma membrane of the yeast and discovered how they travel through the membrane to reach the islands. They made these observations with state-of-the-art super-resolution optical microscopy. The results were published in Nature Communications on 5 February.

Until some 10 years ago, textbooks on cell biology would show the cellular as a homogenous lipid bilayer with randomly inserted membrane proteins. But this view changed significantly with the discovery of different phases in the membrane of mammalian . The lipid composition can differ on 'islands' in the membrane, which affects distribution. However, very little was known about similar structures in cells.

"Electron-microscopy studies from back in the 1960s show depressions in the yeast membrane, but they were not studied in detail and were dismissed as artifacts of sample preparation," explains University of Groningen Professor of Biochemistry Bert Poolman. "Then, about 10 years ago, these depressions were rediscovered. Scientists observed banana-shaped proteins attached to the inner side of the membrane that turned out to be responsible for these depressions, which were named eisosomes."

Poolman decided to study these depressions in the yeast membrane for a number of reasons. "We are deeply involved in a project to build a synthetic cell from molecular components. So we need to know a lot about the membrane and how to get our hands on membrane proteins." Furthermore, the eisosomes are the preferential location of a number of transport proteins that the industry partners of Poolman's research group are interested in.


By using different fluorescent markers to label both the transport proteins in the membrane and the banana-shaped proteins on the inner side, the Poolman group determined which proteins are co-localized with the eisosomes. As the depression is only some 50 nanometres deep, and the eisosomes are a maximum of 150 by 100 nanometres in dimension, this required an extremely high resolution. "Fortunately, our lab has a set of dedicated microscopes that can obtain such an extreme resolution, combined with the high sensitivity needed to observe single molecules in living cells." The experience in super-resolution microscopy and expertise in membrane biochemistry allowed the group to provide images with the required resolution.

The studies revealed that some amino acid transporters are preferentially localized in the eisosome. "But only when there is no substrate available," explains Poolman. "If we add the right amino acid, the protein moves away from the eisosome, probably because it takes on a different conformation in the substrate-bound state." His hypothesis is that the eisosomes protect the transport proteins from recycling. "The proteins are synthesized in the cell and then transported to the membrane by exocytosis. However, when they are not in an eisosome, these proteins are quickly absorbed again through endocytosis." So the transporters are transiently 'stored' in the eisosomes. When the appropriate substrates are present outside the cell, they move away to transport the amino acids into the cell until the proteins are no longer needed, after which they are recycled.


Not all proteins are present in the eisosomes. Poolman says, "For example, we noticed that with large intracellular domains cannot enter them." They propose that the banana-shaped proteins on the inner side of the membrane get in the way of the intracellular domains, which hinders their diffusion into the eisosomes.

The Poolman group also assessed the speed of diffusion of the proteins in the yeast plasma membrane. They observed that this was about a thousand times lower than in mammalian cells or in the internal membranes of the yeast cell. "The yeast plasma membrane is more rigid. It can withstand relatively high concentrations of alcohol or acid. This apparently affects protein diffusion."

The results of this study provide a better insight into the functioning of the yeast cell membrane in general, and more specifically the eisosome islands. They also provide new information on the biogenesis and trafficking of membrane , which in time may improve the industrial productivity of yeast.

Explore further: Formation of cell membrane component domains in artificial lipid bilayer

More information: Frans Bianchi et al, Steric exclusion and protein conformation determine the localization of plasma membrane transporters, Nature Communications (2018). DOI: 10.1038/s41467-018-02864-2

Related Stories

How ribosomes shape the proteome

December 6, 2017

Cells are crowded with macromolecules, which limits the diffusion of proteins, especially in prokaryotic cells without active transport in the cytoplasm. While investigating the relationship between crowding, ionic strength ...

A lipid's role in cell division

November 13, 2017

Proper cell division is a basic process critical to cell survival. A ring composed of actin filaments and myosin motor proteins pinches the cell apart, producing two daughter cells with equal amounts of cellular components.

A new way to discover structures of membrane proteins

February 7, 2017

University of Toronto scientists have discovered a better way to extract proteins from the membranes that encase them, making it easier to study how cells communicate with each other to create human health and disease.

Similar lipids cluster in soybean cell membrane model

June 6, 2017

A cell's plasma membrane forms a protective barrier, separating its inner contents from the outside environment. There is a pressing need to better understand the complex lipid bilayer that makes up this membrane, which limits ...

Recommended for you

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.