Optimizing sludge treatment

October 4, 2016, Fraunhofer-Gesellschaft
The two-stage high-load anaerobic digestion system in Edenkoben allows the wastewater treatment plant to cope with a higher effluent load during the wine harvest. Credit: Verbandsgemeindewerke Edenkoben

Wine harvesting season is a challenge for wastewater treatment plants. When the grapes are being processed, the effluent load rises steeply – by a factor of 17 in the Palatinate town of Edenkoben. High-load anaerobic digestion provides a flexible solution that cuts power consumption by 20 percent, generates over half of the required electricity on site and greatly reduces sewage sludge volumes.

When the vines are heavy with juicy, ripe grapes, it's time for the wine growers and their harvest workers to turn them into wine. But the grape-crushing process produces a large quantity of polluted wastewater that challenges the capacity of the local treatment plant. This is also the case in the wine-growing community of Edenkoben in the Palatinate region of Germany. Whereas the load on its wastewater treatment plant doesn't exceed 7000 person equivalents (PE) on a normal Sunday or public holiday, it can rise to as high as 120,000 PE during the harvest – 17 times as much. This increase in the effluent load also pushes up the plant's , which can surge to three times the normal level at harvesting time. Small-scale wastewater plants use a technique known as aerobic stabilization to prevent the sludge produced during wastewater treatment from developing unpleasant odors. This involves prolonged aeration to stabilize the sludge. The downside is that the aeration system consumes a lot of energy.

Energy requirements reduced by 20 percent

Edenkoben's plant has operated far more efficiently – and not only with regard to power consumption – since the introduction of the high-load anaerobic digestion, a process developed by researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart. "We converted the plant to a process based on high-load anaerobic digestion with the help of colleagues from several engineering companies. The new process implemented in Edenkoben has numerous advantages. First, it generates energy instead of merely consuming it. Second, it reduces the quantity of sludge that would otherwise have to be disposed of at great cost," explains Fraunhofer IGB scientist Dr. Werner Sternad. Energy consumption is 20 percent lower because the process doesn't require a power-hungry aeration system. Of the power actually consumed, 50 percent or more is generated from sewage gas on-site in two cogeneration units. This means that less than half of the electricity the wastewater plant needs is bought in. Sludge disposal is another area in which it has been possible to slash costs. In the past, the sludge had to be dewatered on a daily basis. Anaerobic digestion produces so little sludge that now the filter press runs only twice a week, except during the wine harvest.

Adaptable to operating needs

One of the researchers' main priorities was to design a solution for Edenkoben adapted to the local situation, namely wide seasonal variations in the effluent load. "We installed two digestion tanks, which can be operated in parallel during the wine harvest, or in series at other times of the year. This makes it possible to adapt the process flow to the volume of sludge produced and optimize sludge treatment," reports Sternad. The new plant entered service in early 2016. When operating in series mode, it is processing approximately 40 cubic meters per day. During the wine harvest, however, it can now go up to 130 cubic meters. "High-load anaerobic digestion enables a flexible response to changes in the effluent load," says Sternad. "It also saves energy, produces its own electricity, and greatly reduces the quantity of sewage for disposal."

Explore further: Energy efficient sewage plants

Related Stories

Energy efficient sewage plants

August 13, 2009

High-rate digestion with microfiltration is state-of-the-art in large sewage plants. It effectively removes accumulated sludge and produces biogas to generate energy. A study now reveals that even small plants can benefit ...

Energy from microbes for drying sewage sludge

August 13, 2012

A new biodrying process from Siemens quickly converts sewage sludge into a usable form while saving energy. When dried with the new process, sludge from wastewater treatment can be used as fertilizer, dumped in landfills ...

Purifying sludge through oxygen-based digestion

April 29, 2013

An additive for oxygen-based processing of sludge may be useful in specific cases in lowering the environmental impact of waste water treatment for the meat and dairy industries.

Water purification unit generates its own energy

July 25, 2011

A new biological water purification facility developed by Siemens generates enough methane gas to power its own operations. It also produces much less sludge than conventional systems. The pilot facility for this process, ...

'If a Package Stinks, It Belongs to Me'

December 8, 2006

The county of Los Angeles may not like this distinction, but Virginia Tech environmental engineer John Novak says the sludge from this area of California has the “worst odor of any I have ever tested.” A walk inside his ...

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.