Engineer pursues biological solar power

February 11, 2015 by Todd R. Mcadam, Binghamton University
Engineer pursues biological solar power

A Binghamton University engineering researcher designed a biological solar cell that's a million times more effective than current technology. Preliminary data on Seokheun "Sean" Choi's next advancement is a thousand times better than that. His cell also works in the dark, and is self-sustaining.

The new designs don't make biological solar cells practical, yet. But they do take them out of the realm of "absurd" and place them squarely in the realm of "someday soon."

Here's the challenge:

Current generate watts of energy per square centimeter. A solar chip about the size of your fingernail can power a simple handheld calculator. Existing biological cells—which use photosynthesis to generate electricity—produce picowatts per square centimeter—a trillionth of a watt. To power that same calculator, the cells would stretch 20 meters wide and from Binghamton to Ireland. Absurd.

Choi's first biological solar cell produces a million times more energy, microwatts per square centimeter, so the calculator could operate with a solar panel that fits on a trailer home roof—just 20 meters by 5 meters. His findings were recently published in the Royal Society of Chemistry's journal Lab on a Chip.

And Choi's latest experiment churns out milliwatts per square centimeter—reducing the calculator's solar panel to a backpack-sized 8 inches by 20.

That brings it into the range of practical application, says Hongseok "Moses" Noh, an engineer and professor at Drexel University who specializes in lab-on-a-chip technology and applications. "Milliwatt power should be sufficient to meet those eneeds," Noh says. "But the device, so far, is too big for hand-held systems, honestly."

If Choi can reduce the cell to a tenth of its size while maintaining milliwatt power density, it would be enough to power hand-held blood analysis devices or air-testing machines. "This is one of very few miniaturized bio-solar products," Noh says, and it's worth following Choi's progress.

What makes Choi's approach different? Existing biological use a thin strip of gold or as an anode between the bacteria and an air cathode. Not very efficient, and the bacteria eventually die because they lack air.

Choi uses a carbon anode immersed in the bacteria-laden fluid—a pretty peridot green in a lab flask. More efficient, and because the solution has access to air, it's self-sustaining. It also uses the plant's natural respiration to draw energy from the sugars in the cells to keep power up even if light is low.

Choi, an assistant professor of electrical and computer engineering, says he doesn't understand why one form of cyanobacteria works better than another, or why a mixture of cyanobacteria and heterotrophic bacteria work even better than a single variety. His last biology class was in high school.

"I have no idea about microbiology; I just bought the bacteria and followed the instructions to culture it," he says. But millions of bacteria species abound, and he plans to experiment to find the most productive combination.

Or, he suggests, he might work with bioengineers to develop a bacteria with its photosynthetic engine on the cell's surface instead of deep in its heart. That would be another order of magnitude more productive because less energy would be wasted just going from the heart of the cell to its exterior. He has received seed funding from Binghamton's Transdisciplinary Area of Excellence in smart energy to continue this work.

Choi says he's confident he'll eventually reach watt-level energy density, comparable to photovoltaic . "I can get that," he says. "We have room for improvement."

Explore further: High efficiency concentrating solar cells move to the rooftop (w/ Video)

Related Stories

New solar cells serve free lunch

September 24, 2014

One of the most common complaints about solar power is solar panels are still too expensive to be worth the investment. Many researchers have responded by making solar cells, the tile-like components of solar panels that ...

Running fuel cells on bacteria

January 30, 2015

Researchers in Norway have succeeded in getting bacteria to power a fuel cell. The "fuel" used is wastewater, and the products of the process are purified water droplets and electricity.

Recommended for you

Asteroids, hydrogen make great recipe for life on Mars

March 26, 2019

A new study reveals asteroid impacts on ancient Mars could have produced key ingredients for life if the Martian atmosphere was rich in hydrogen. An early hydrogen-rich atmosphere on Mars could also explain how the planet ...

Cool Earth theory sheds more light on diamonds

March 26, 2019

A QUT geologist has published a new theory on the thermal evolution of Earth billions of years ago that explains why diamonds have formed as precious gemstones rather than just lumps of common graphite.

New cellulose-based material represents three sensors in one

March 26, 2019

Cellulose soaked in a carefully designed polymer mixture acts as a sensor to measure pressure, temperature and humidity at the same time. The measurements are completely independent of each other. The ability to measure pressure, ...

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Study finds people who feed birds impact conservation

March 26, 2019

People in many parts of the world feed birds in their backyards, often due to a desire to help wildlife or to connect with nature. In the United States alone, over 57 million households in the feed backyard birds, spending ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Tim Too
1.3 / 5 (4) Feb 11, 2015
"A Binghamton University engineering researcher designed a biological solar cell that's a million times more effective than current technology"

Who wrote this crap? Current technology would have to be less than 1/(1,000,000) efficient to make this stupid claim true. Somebody hire a writer that has some type of science degree please.
SteveL
5 / 5 (6) Feb 11, 2015
It was explained later in the article that the comparison was against previous biological solar cells, not the PV cells we are so familiar with.
TudorCorneliu
not rated yet Feb 12, 2015
@SteveL+1

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.