Related topics: solar cells

All-in-one transparent transistors

Small tweaks in component ratios generate electronically different layers from the same material to create transparent transistors.

Rare metals from e-waste

This year, beautifully wrapped laptops, mobile phones or even new TV sets lay under Christmas trees. They are enthusiastically put into useā€”and the old electronic devices are disposed of. The e-waste contains resources ...

Building 'OLEDs' from the ground up for better electronics

From smartphones to TVs and laptops, light emitting diode (LED) displays are ubiquitous. OLEDs (where the O denotes they are organic, or carbon-based) are among the most energy efficient of these devices, but they generally ...

Making flexible electronics with nanowire networks

A smartphone touchscreen is an impressive piece of technology. It displays information and responds to a user's touch. But as many people know, it's easy to break key elements of the transparent, electrically conductive layers ...

page 1 from 8

Indium tin oxide

Indium tin oxide (ITO, or tin-doped indium oxide) is a solid solution of indium(III) oxide (In2O3) and tin(IV) oxide (SnO2), typically 90% In2O3, 10% SnO2 by weight. It is transparent and colorless in thin layers. In bulk form, it is yellowish to grey. In the infrared region of the spectrum it is a metal-like mirror.

Indium tin oxide's main feature is the combination of electrical conductivity and optical transparency. However, a compromise has to be reached during film deposition, as high concentration of charge carriers will increase the material's conductivity, but decrease its transparency.

Thin films of indium tin oxide are most commonly deposited on surfaces by electron beam evaporation, physical vapor deposition, or a range of sputter deposition techniques.

This text uses material from Wikipedia, licensed under CC BY-SA