Safe water for the people in Tanzania

Jun 20, 2014
Inhabitants of the village of Mdori in the region of Manyara taste the freshly filtered water. Credit: Andrea Schäfer

Hydraulic engineer Andrea Schäfer and photovoltaics expert Bryce Richards have developed a solar filtration system to produce high-quality drinking water from polluted brackish water and tested it successfully in Tanzania. The test results are currently being analyzed at the KIT. The filter effectively separates undesired substances, bacteria, and viruses. Fluoride concentration that often is extremely high in Tanzania is reduced below the limit given by the World Health Organization (WHO). The system combines two membrane techniques for the separation of smallest particles and dissolved contaminants. As it is robust and autonomously mobile, it is suited well for water supply in poor and rural areas.

Outside of the rainy season, the area of Mdori which is located in the north of Tanzania in the region of Manyara is extremely hot and dry. Water is scarce, the lake located nearby has an extremely high salt concentration. A well drilled to extract water from a natural spring supplies water with a high salt concentration and 60 µg of fluoride per liter – 40 times the concentration limit given by the WHO –. This water is not potable. At this spring, Professor Andrea Schäfer and Professor Bryce Richards, who are now working at the KIT, tested their water filtration system ROSI (Reverse Osmosis Solar Installation). The system can be operated with solar and/or wind power. It combines ultrafiltration membranes of about 50 nm in pore size to retain macromolecular substances, particles, bacteria, and viruses with membranes for nanofiltration and reverse osmosis with pore sizes below 1 nm to remove dissolved molecules from the water. Andrea Schäfer and Bryce Richards conceived ROSI in Australia and developed it further in Scotland before they started to plan their field tests at the Nelson Mandela African Institution of Science and Technology in Tanzania. In February and March this year, they tested the system at places like Mdori. Presently, Schäfer and Richards are evaluating the test results at the KIT. In the next phase, the systems will be installed at the locations selected.

As the system is run directly by solar power without batteries, the behavior of the filter changes as a function of the light conditions: Under full solar irradiation, the filtration system reduces the fluoride concentration of the water below the WHO limit of 1.5 mg/l. As a result of the change between day and night and strong temporary cloud formation in the region of Mdori, however, energy supply varies considerably. It is interrupted, if solar irradiation is insufficient. Influence of such fluctuations on water quality was one of the aspects covered by the tests of the researchers. "If less power is available, pressure decreases. As a result, less water passes the membranes. The fluoride concentration increases for a short term," Professor Andrea Schäfer explains. She heads the Membrane Technology Division of the Institute of Functional Interfaces (IFG) of KIT. "The concentration of fluoride and other pollutants, however, is balanced as soon as more water passes the filter again. Hence, the water is completely safe."

Andrea Schäfer and Bryce Richards, Professor of Nanophotonics for Energy at the KIT, are now looking for companies to support system manufacture and installation and operation in rural regions of Tanzania. One system can supply about 50 people with high-quality and water for household use. "At the moment, no other system removes pollutants, such as fluoride, as reliably and sustainably as ours," Schäfer says. High fluoride concentrations may cause tooth discolorations and severe skeletal deformities in children. It is also important to remove bacteria and viruses from the water. In many areas of Africa, diseases that actually can be treated well, such as diarrheal diseases, are often fatal especially for children due to malnutrition and lacking medical care. Supply with safe drinking will play a key role for the future of the people in Africa.

Explore further: New generation of water treatment membranes

add to favorites email to friend print save as pdf

Related Stories

Herbal defluoridation of drinking water

Mar 05, 2013

Researchers in India have developed a filter system based on a medicinal herb, which they say can quickly and easily remove "fluoride" from drinking water. The technology described in the March issue of the International Jo ...

New generation of water treatment membranes

May 14, 2014

Due to the increasing amount of contaminants in surface water, such as hormones and medicine residues, it is increasingly difficult to produce clean drinking water in the Netherlands. This requires a new generation of water ...

Fluoride in drinking water cuts tooth decay in adults

Mar 05, 2013

(Medical Xpress)—An international study conducted by researchers at the University of Adelaide has resulted in the strongest evidence yet that fluoride in drinking water provides dental health benefits to adults.

Recommended for you

Paraffins to cut energy consumption in homes

3 hours ago

Thermal energy storage is a common strategy in energy production systems in which the period of production does not coincide with that of consumption. This happens with the production of hot water by means ...

Rubber technology important in reducing CO2 emissions

6 hours ago

Despite numerous measures taken by manufacturers, the worldwide level of CO2 car emissions is still increasing at an alarming rate. The automotive sector is working hard to develop lightweight constructions, ...

EnGo public charging station serves university students

10 hours ago

Kinetic tiles and solar panels are ready to power up mobile devices for people on the go thanks to something called the EnGo charging station. The technology involves a combination of kinetic tiles and solar ...

User comments : 0