Sun powers complex cancer test for remote regions

Feb 21, 2014 by Blaine Friedlander
Sun powers complex cancer test for remote regions
Li Jiang, a doctoral candidate in engineering, explains the solar thermal PCR  test for a smartphone. The system can detect Kaposi’s sarcoma - a deadly skin cancer related to HIV infection - in about a half-hour.

From the sun, a solution: Cornell University and Weill Cornell Medical College researchers have remodeled an energy-intensive medical test – designed to detect a deadly skin cancer related to HIV infections – to create a quick diagnostic assay perfect for remote regions of the world, according to Scientific Reports (Feb. 20), an online publication of Nature.

By harnessing the sun's power and employing a , medical technicians may now handily administer reliable assays for Kaposi's sarcoma, which has produced significant morbidity and mortality rates among adults and children in sub-Saharan Africa.

This Cornell-developed solar thermal PCR () test for a smartphone uses about 80 milliwatts – or .08 watts – which means that a standard smartphone battery could provide about 70 hours of power for testing. With this system, medical technicians can obtain human skin biopsies, deposit the biopsied material into the solar thermal PCR device and obtain completed diagnostic tests with a smartphone in less than 30 minutes.

"Mortality in sub-Saharan Africa following a Kaposi's sarcoma diagnosis is unacceptably high, even after introduction of antiretroviral therapies. This is partly due to the difficulty of making an accurate diagnosis with current technologies, which results in delayed treatment and advanced disease, which is difficult to treat," said Ethel Cesarman, M.D., professor of pathology and laboratory medicine at Weill Cornell Medical College in New York.

Sun powers complex cancer test for remote regions
A smartphone application, working in conjunction with the PCR device, provides results of the diagnostic tests.

"DNA tests are extensively used in medical diagnostics since they are sensitive and specific. Some places in the developing world have limited infrastructure and unreliable electricity, and these kinds of tests usually hog energy," said David Erickson, Cornell professor of mechanical and aerospace engineering.

"We believe that exploiting the ubiquity of solar thermal energy – as demonstrated here – could facilitate broad availability of nucleic-based diagnostics in resource-limited areas," said first author Li Jiang, a doctoral candidate in Cornell's Sibley School of Mechanical and Aerospace Engineering.

The thermal-cycling process needed for DNA amplification typically requires ample energy to process biopsies, including steps such as denaturation (breaking down nucleic acid structures), extension (duplicating the DNA chain) and annealing (recombining the DNA material). Solar thermal DNA amplification – which the Cornell group devised and that is the size of a lunchbox – removes the power requirements for thermal cycling and enables a 100-fold reduction in power consumption compared with state-of-the-art, Western devices.

"Tests can be performed in less than a half-hour, potentially enabling rapid diagnostics where long travel distances to clinics make follow-up meetings with patients difficult," said Cesarman.

Other authors of the study, "Solar Thermal Polymerase Chain Reaction for Smartphone-Assisted Molecular Diagnostics," include Matthew Mancuso, a doctoral candidate in Cornell's Department of Biomedical Engineering; Zhengda Lu, M.Eng. '13; and Gunkut Akar, a researcher in pathology and laboratory medicine at Weill Cornell Medical College.

Explore further: NREL report finds similar value in two concentrating solar power technologies

add to favorites email to friend print save as pdf

Related Stories

Detecting disease with a smartphone accessory

Jun 04, 2013

As antiretroviral drugs that treat HIV have become more commonplace, the incidence of Kaposi's sarcoma, a type of cancer linked to AIDS, has decreased in the United States. The disease, however, remains prevalent ...

Proposed solar array offers a bright energy future

Jul 15, 2013

Here comes the sun: Cornell hopes to expand its renewable energy portfolio as it benefits from the NY-Sun Initiative, a series of large-scale, solar energy projects expected to add about 67 megawatts of solar ...

Recommended for you

The state of shale

Dec 19, 2014

University of Pittsburgh researchers have shared their findings from three studies related to shale gas in a recent special issue of the journal Energy Technology, edited by Götz Veser, the Nickolas A. DeCecco Professor of Che ...

Website shines light on renewable energy resources

Dec 18, 2014

A team from the University of Arizona and eight southwestern electric utility companies have built a pioneering web portal that provides insight into renewable energy sources and how they contribute to the ...

Better software cuts computer energy use

Dec 18, 2014

An EU research project is developing tools to help software engineers create energy-efficient code, which could reduce electricity consumption at data centres by up to 50% and improve battery life in smart ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.