Related topics: dna

New technology can detect antivirus antibody in 20 minutes

Researchers have succeeded in detecting anti-avian influenza virus antibody in blood serum within 20 minutes, using a portable analyzer they have developed to conduct rapid on-site bio tests. If a suitable reagent is developed, ...

Genetic barcodes can ensure authentic DNA fingerprints

Engineers at Duke University and the New York University's Tandon School of Engineering have demonstrated a method for ensuring that an increasingly popular method of genetic identification called "DNA fingerprinting" remains ...

COVID-19 puts new science to the pressure test

By its very nature, science rarely offers a quick fix. New technologies and medicines often take years to prove that they are safe and effective. Yet the surging COVID-19 pandemic is forcing scientists to condense this process ...

New COVID-19 test quickly and accurately detects viral DNA

Millions of people have been tested for the novel coronavirus, most using a kit that relies on the polymerase chain reaction (PCR). This sensitive method amplifies SARS-CoV-2 RNA from patient swabs so that tiny amounts of ...

Crab disease poses threat to shellfish stocks

Shore crabs carry parasites that pose a major threat to shellfish stocks. In a new study, Swansea University researchers have used several different detection methods, including taking DNA from seawater, to build up the first ...

New DNA amplification capsule holds promise for fighting diseases

DNA amplification—a molecular "photocopying" technique where genetic material is replicated—has many applications in scientific research, forensic science, and medical laboratories. It is useful for detecting and identifying ...

page 1 from 10

Polymerase chain reaction

In molecular biology, the polymerase chain reaction (PCR) is a technique to amplify a single or few copies of a piece of DNA across several orders of magnitude, generating millions or more copies of a particular DNA sequence. The method relies on thermal cycling, consisting of cycles of repeated heating and cooling of the reaction for DNA melting and enzymatic replication of the DNA. Primers (short DNA fragments) containing sequences complementary to the target region along with a DNA polymerase (after which the method is named) are key components to enable selective and repeated amplification. As PCR progresses, the DNA generated is itself used as a template for replication, setting in motion a chain reaction in which the DNA template is exponentially amplified. PCR can be extensively modified to perform a wide array of genetic manipulations.

Almost all PCR applications employ a heat-stable DNA polymerase, such as Taq polymerase, an enzyme originally isolated from the bacterium Thermus aquaticus. This DNA polymerase enzymatically assembles a new DNA strand from DNA building blocks, the nucleotides, by using single-stranded DNA as a template and DNA oligonucleotides (also called DNA primers), which are required for initiation of DNA synthesis. The vast majority of PCR methods use thermal cycling, i.e., alternately heating and cooling the PCR sample to a defined series of temperature steps. These thermal cycling steps are necessary to physically separate the strands (at high temperatures) in a DNA double helix (DNA melting) used as the template during DNA synthesis (at lower temperatures) by the DNA polymerase to selectively amplify the target DNA. The selectivity of PCR results from the use of primers that are complementary to the DNA region targeted for amplification under specific thermal cycling conditions.

Developed in 1984 by Kary Mullis, PCR is now a common and often indispensable technique used in medical and biological research labs for a variety of applications. These include DNA cloning for sequencing, DNA-based phylogeny, or functional analysis of genes; the diagnosis of hereditary diseases; the identification of genetic fingerprints (used in forensic sciences and paternity testing); and the detection and diagnosis of infectious diseases. In 1993 Mullis was awarded the Nobel Prize in Chemistry for his work on PCR.

This text uses material from Wikipedia, licensed under CC BY-SA