Stop hyperventilating, say energy efficiency researchers

Jun 18, 2013

A single advanced building control now in development could slash 18 percent – tens of thousands of dollars – off the overall annual energy bill of the average large office building, with no loss of comfort, according to a report by researchers at the Department of Energy's Pacific Northwest National Laboratory.

"An 18-percent boost in efficiency by modifying a single factor is very, very good," said team leader Michael Brambley. "The savings were much greater than we expected."

The report is based on extensive simulations of the impact of one type of advanced building control now in the offing in the building industry. The device is capable of customizing the level of ventilation by sensing the number of people in different areas or zones of a building and then adjusting fan speed and air movement accordingly.

That's a big change from the way most sensor-based ventilation systems operate now: Currently, if there is even a single person in a room, ventilation runs full blast, as if the room is full.

But a room with just a few people doesn't need nearly as much ventilation as a crowded room. Why have a fan pushing around air for ventilation for 100 people if there's only one individual in the room? It's like airing out your house completely because there's one small whiff of bacon still in the kitchen.

"This is the reason you often feel cold when you're in a big space like a conference room or cafeteria without a lot of people," said engineer Guopeng Liu, the lead author of the report. "Technology available today doesn't detect how many people are in a room, and so is at maximum capacity nearly constantly. That creates a big demand to re-heat the air before it enters the rooms. It takes a lot of energy to keep you comfortable under those circumstances."

Current occupancy sensors have helped the nation save significant amounts of energy by automatically turning off lights when they're not needed. But the team estimates that the more advanced versions still to come – which count the number of people in rooms – will save approximately 28 times as much energy, when used both for lighting and ventilation, compared to current sensors.

The project began three years ago when Liu began exploring the idea of adjusting air flow to different zones of a building based on the precise number of people in a room. That "decision" of how much air to move takes place in a piece of equipment known as a variable air volume terminal box. The new sensors that count people are likely to become available within the next few years. While they are currently very expensive, the technology is improving rapidly and the cost is expected to come down, Brambley noted.

"We undertook this study to try to determine if this is a technology worth pursuing vigorously. The answer, clearly, is yes. Using the number of people in a room as a factor in determining the level of air flow offers great promise for saving energy and money," said Brambley.

To do its study, the team focused on a prototypical large commercial office building whose footprint is 160 feet by 240 feet – about 80 percent the size of a football field. The model building is 12 stories and also has a basement, giving it a total of about 500,000 square feet. Such buildings in the United States take up more than 4.4 billion square feet. To visualize the size, think of the land area covered by Seattle – and a little bit of its suburbs – as a giant one-story building.

Brambley's team programmed the simulation to heat a building if temperatures dipped below 70 degrees Fahrenheit and to provide cooling at temperatures beginning at 75 degrees. Numbers were set back 10 degrees on the evenings and weekends. Occupancy patterns were estimated based on past studies.

In 13 of the nation's 15 climate regions, the PNNL team estimates that the advanced controls would save at least $40,000 annually for each building similar in size to the one modeled in the study. In two cities, Duluth and Fairbanks, the savings stretch to more than $100,000 each year, because of the greatly reduced need to heat new air being pumped in from the cold outdoors. Even in the two cities where the savings would be the least, El Paso and Miami, estimated savings come to $33,400 and $23,500, respectively.

"While buildings have gotten much more efficient in the last two decades, there are still huge gains to be had," noted Brambley.

Since just a small percentage of office buildings in any given year are newly built, Brambley and Liu say a prime target for these advanced controls is retrofitting existing buildings. Liu notes that technology has leaped forward since 1989 – the year the average large office building was built – offering huge energy gains even with the expense of retrofitting.

Since heating and cooling and related equipment usually draw much more energy than lighting, those systems offer a greater opportunity for savings. The team found that advanced controls for ventilation offer about eight times as much savings as advanced controls for lighting, where lights are turned off more quickly than is now common after everyone leaves a room. When the HVAC (heating, ventilation, and air conditioning) system alone is considered, the advanced controls cut energy usage by nearly 40 percent.

A stumbling block to the new technology is that certain advanced controls might require modification to some building codes. For instance, current codes require some ventilation at all times no matter how many people are present. Brambley thinks the options are worth considering, given the energy savings at stake.

In addition to Brambley and Liu, mechanical engineer Jian Zhang and engineer Robert Lutes contributed to the project. The work was support by DOE's Office of and Renewable Energy.

Explore further: Fukushima accepts 'temporary' radioactive waste storage

add to favorites email to friend print save as pdf

Related Stories

A layer of cool, healthy air

Dec 17, 2012

Stratum ventilation systems have been touted as a much more energy efficient system for cooling buildings such as school rooms and offices in hotter climes based on the provisions of the recent ANSI/ASHRAE 55-2010. They may ...

Energy-positive with natural ventilation

May 17, 2013

Buildings can be air-conditioned using entirely natural means, without mechanical ventilation systems. This is the claim made by 78-year-old Benjamin Bronsema, who will be awarded his PhD for his thesis on the subject at ...

Intelligent door seal prevents poor air quality

Jun 05, 2013

For a long time, heat insulation was en vogue – and nearly no one was concerned about poor indoor air quality. And yet excess CO2 hampers concentration. Now, researchers have come up with an intelligent ...

Turning a building green is a question of control

Jun 12, 2013

Sustainable buildings partly depend on control strategies to be energy efficient. Implementation of possible control systems are now under study for two of the three showcases buildings, developed under the ...

Recommended for you

Storing solar energy

19 hours ago

A research project conducted by Leclanché S.A., the Ecole Polytechnique Federale de Lausanne (EPFL), Romande Energie and with the financial support of the Canton of Vaud could bring a real added value in ...

Scientists get set for simulated nuclear inspection

23 hours ago

Some 40 scientists and technicians from around the world will descend on Jordan in November to take part in a simulated on-site inspection of a suspected nuclear test site on the banks of the Dead Sea.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

rwinners
not rated yet Jun 18, 2013
I'm not following the logic. Room temperatures in a modern building are controlled by sensors - thermostats - that maintain temp in a given range. This seems to me to be a more efficient method.... with the exception of turning off the system when on one is present.
Bill_Collins
not rated yet Jun 18, 2013
rwinners - Large buildings are required to maintain a fresh air flow from the outside. This fresh air must be heated or cooled as it comes in to maintain human comfort. The air is pulled into the building whether it is needed or not. The system described adjusts the amount of fresh air that comes in based on the number of people present in any given area. This dramatically reduces the energy required to maintain the temperature of that area.