Cutting and pasting with graphene

December 11, 2018, Leiden University
This visualisation shows layers of graphene used for membranes. Credit: University of Manchester

To date it has proved very difficult to convert the promises of the miracle material graphene into practical applications. Amedeo Bellunato, Ph.D. candidate at the Leiden Institute of Chemistry, has developed a method of cutting graphene into smaller fragments using a diamond knife. He can then construct nanostructures from the fragments. Ph.D. defence 11 December.

Graphene is a honeycomb structure of carbon atoms just a thick. After its discovery in 2004, it seemed to be the ideal basic material for nanotechnology : it is super strong and it is an exceptionally good conductor of both heat and electricity. In 2013 the EU launched the Graphene Flagship a research programme with a budget of a billion euros to develop such applications as more efficient solar cells, LEDs, batteries and all kinds of sensors.

However, in his dissertation, Bellunato states that making such nanostructures is still an extremely complex production process that does not lend itself well to serial production. Also, it has proven almost impossible to selectively functionalize graphene chemically, i.e. to connect other , such as oxygen or , to the edges of a graphene nanostructure. It is important to be able to do this in order to make graphene into a versatile nanomaterial with multiple applications.

Graphene sandwich

Inspired by earlier experiments, Bellunato decided to take a different approach, namely to take a sandwich of plastic and metal with a layer of graphene in the middle, and to literally cut it into fragments. He does this using a microtome, a diamond knife that can cut fragments with nanometre precision.

In the cutting edge of the sandwich, a perfectly clean, one-atom-thick edge of graphene is exposed, to which other atoms or molecules can be connected by chemical means. The graphene slice can also be connected to an , turning it into an electrochemical cell. This can be compared with the electrochemical coating of a metal, but then at nanoscale, since only the edge of the graphene is coated. Bellunato was also able to build a sandwich of nanopores and nanogapsof using microscopically thin strips.

It also proved possible to make a so-called tunnel junction. This occurs between two electrical conductors, when they are within a few nanometres of one another at a particular point. A minuscule current can then flow between the two conductors. As the flow of energy is very sensitive to the distance between the conductors, this tunnel effect forms the basis for all kinds of extremely sensitive sensors.

Bellunato: "This tunnel junction is not new. It is a matter of refining the technique, and then it should have practical applications within five years or so." The unconventional technique that he developed will not primarily be used in , he expects, but rather in advanced research instruments.

Explore further: Atoms use tunnels to escape graphene cover

Related Stories

Atoms use tunnels to escape graphene cover

November 1, 2018

Graphene has held great potential for practical applications since it was first isolated in 2004. But we still don't use it in our large-scale technology, because we have no way of producing graphene on an industrial scale. ...

New insights on graphene

December 21, 2017

Graphene floating on water does not repel water, as many researchers believe, but rather attracts it. This has been demonstrated by chemists Liubov Belyaeva and Pauline van Deursen and their supervisor Grégory F. Schneider. ...

Travelling through the body with graphene

September 28, 2016

For the first time researchers succeeded to place a layer of graphene on top of a stable fatty lipid monolayer. Surrounded by a protective shell of lipids graphene could enter the body and function as a versatile sensor. ...

Polymer-graphene nanocarpets to electrify smart fabrics

April 18, 2018

Researchers from Tomsk Polytechnic University, together with their international colleagues, have discovered a method to modify and use graphene, a one-atom thin conductor of current and heat, without destroying it. Thanks ...

Evidence found of magnetism at the edges of graphene

June 1, 2018

A team of researchers from the U.K., Germany and Russia has found evidence of magnetism at the edges of graphene. In their paper published in the journal Nature, the researchers describe how they made their discovery and ...

New chemical method could revolutionize graphene

June 15, 2017

University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.

Recommended for you

Earth's deep mantle flows dynamically

March 25, 2019

As ancient ocean floors plunge over 1,000 km into the Earth's deep interior, they cause hot rock in the lower mantle to flow much more dynamically than previously thought, finds a new UCL-led study.

Scientists solve mystery shrouding oldest animal fossils

March 25, 2019

Scientists from The Australian National University (ANU) have discovered that 558 million-year-old Dickinsonia fossils do not reveal all of the features of the earliest known animals, which potentially had mouths and guts.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.