New insights on graphene

December 21, 2017, Leiden University
Credit: Leiden University

Graphene floating on water does not repel water, as many researchers believe, but rather attracts it. This has been demonstrated by chemists Liubov Belyaeva and Pauline van Deursen and their supervisor Grégory F. Schneider. The study is published in Advanced Materials.

Graphene is made up of the same material as graphite – found in pencils for example – which is why it was assumed for a long time that, like graphite, graphene is repellant. A key difference from graphite is that graphene is no more than a single atom thick.

The studies on graphene gave rise to differing ideas about its wetting properties. The Leiden researchers have now discovered that the surface of graphene on water, provided it is clean and smooth, is hydrophilic. In other words, graphene in water attracts water.

This insight is very significant for the future applications of graphene. Its thin of carbon atoms, arranged in a honeycomb structure, make the material suitable for use in biosensors to decode DNA. This ultra-thin material can also be used in sensors, and membranes of fuel cells. In all these cases, a graphene layer is exposed to water on both sides.

For a long time, graphene was believed to be hydrophobic, or . The researchers assume that this is because graphene is generally produced on a metal surface and is later transferred to a solid support such as a silicon wafer. During this transfer process, however, the graphene can become damaged or contaminated, which can influence the wetting behaviour.

To determine whether or not the surface of an intact layer of graphene is hydrophilic, a droplet of water has to be introduced onto the layer. It is then possible to determine from the curvature of the droplet whether the surface is water repellent, just like a raincoat, or whether it attracts water. So much for the theory, because in practice such a droplet will immediately tear the thin graphene layer, resulting in cracks, after which there is not much left to measure.

The researchers resolved this problem by using ice or hydrogel instead of water as the support . Ice and hydrogel are much stronger and are good imitators of water. The researchers were then able to introduce minuscule droplets of water onto the graphene and measure the contact angle between the graphene and the outside of the droplet. They also repeated the measurements using other liquids with a different polarity. They were then able to determine that all molecular interactions of the underlying water are felt by the water molecules in the droplet above. This complete transparency is the consequence of graphene's extreme thinness, and it explains why graphene is hydrophilic on water.

This discovery has a great impact on applications of graphene in sensors, water filtration, and membrane-based fuel cells, all of which feature graphene exposed to water. Developers will have to consider a completely different starting point, namely that the they work with is not hydrophobic, but hydrophilic.

Explore further: Graphene water filter turns whisky clear

More information: Liubov A. Belyaeva et al. Hydrophilicity of Graphene in Water through Transparency to Polar and Dispersive Interactions, Advanced Materials (2017). DOI: 10.1002/adma.201703274

Related Stories

Graphene water filter turns whisky clear

November 14, 2017

Previously graphene-oxide membranes were shown to be completely impermeable to all solvents except for water. However, a study published in Nature Materials, now shows that we can tailor the molecules that pass through these ...

Gas gives laser-induced graphene super properties

May 15, 2017

Rice University scientists who invented laser-induced graphene (LIG) for applications like supercapacitors have now figured out a way to make the spongy graphene either superhydrophobic or superhydrophilic.

Is graphene hydrophobic or hydrophilic?

August 18, 2015

The National Physical Laboratory's (NPL) Quantum Detection Group has just published research investigating the hydrophobicity of epitaxial graphene, which could be used in the future to better tailor graphene coatings to ...

Taming 'wild' electrons in graphene

October 23, 2017

Graphene - a one-atom-thick layer of the stuff in pencils - is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can't be stopped.

Travelling through the body with graphene

September 28, 2016

For the first time researchers succeeded to place a layer of graphene on top of a stable fatty lipid monolayer. Surrounded by a protective shell of lipids graphene could enter the body and function as a versatile sensor. ...

Scientists move graphene closer to transistor applications

August 29, 2017

Scientists at the U.S. Department of Energy's Ames Laboratory were able to successfully manipulate the electronic structure of graphene, which may enable the fabrication of graphene transistors— faster and more reliable ...

Recommended for you

Minimalist biostructures designed to create nanomaterials

June 15, 2018

Researchers of the Institute of Biotechnology and Biomedicine (IBB-UAB) have generated four peptides, molecules smaller than proteins, capable of self-assembling in a controlled manner to form nanomaterials. The research, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.