Related topics: electrons · earth · water · molecules · polymer

Modeling a model nanoparticle

Metal nanoparticles have a wide range of applications, from medicine to catalysis, from energy to the environment. But the fundamentals of adsorption—the process allowing molecules to bind as a layer to a solid surface—in ...

'Demon oil' on the defensive over climate change

At the dawn of an era scientists have dubbed the Anthropocene, driven by human impact on the planet, the energy industry's four-yearly gathering was forced onto the defensive on climate change.

Discovery challenges accepted rule of organic solar cell design

Solar cells that use mixtures of organic molecules to absorb sunlight and convert it to electricity, that can be applied to curved surfaces such as the body of a car, could be a step closer thanks to a discovery that challenges ...

page 1 from 23

Surface

In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R3 — for example, the surface of a ball or bagel. On the other hand, there are surfaces which cannot be embedded in three-dimensional Euclidean space without introducing singularities or intersecting itself — these are the unorientable surfaces.

To say that a surface is "two-dimensional" means that, about each point, there is a coordinate patch on which a two-dimensional coordinate system is defined. For example, the surface of the Earth is (ideally) a two-dimensional sphere, and latitude and longitude provide coordinates on it — except at the International Date Line and the poles, where longitude is undefined. This example illustrates that not all surfaces admits a single coordinate patch. In general, multiple coordinate patches are needed to cover a surface.

Surfaces find application in physics, engineering, computer graphics, and many other disciplines, primarily when they represent the surfaces of physical objects. For example, in analyzing the aerodynamic properties of an airplane, the central consideration is the flow of air along its surface.

This text uses material from Wikipedia, licensed under CC BY-SA