Related topics: electrons · earth · water · molecules · polymer

Japan moon probe survives second lunar night

Japan's moon lander woke up after unexpectedly surviving a second frigid, two-week lunar night and transmitted new images back to Earth, the country's space agency said Thursday.

Physicists discover a novel quantum state in an elemental solid

Physicists have observed a novel quantum effect termed "hybrid topology" in a crystalline material. This finding opens up a new range of possibilities for the development of efficient materials and technologies for next-generation ...

New model clarifies why water freezes at a range of temperatures

From abstract-looking cloud formations to roars of snow machines on ski slopes, the transformation of liquid water into solid ice touches many facets of life. Water's freezing point is generally accepted to be 32 degrees ...

page 1 from 5

Surface

In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R3 — for example, the surface of a ball or bagel. On the other hand, there are surfaces which cannot be embedded in three-dimensional Euclidean space without introducing singularities or intersecting itself — these are the unorientable surfaces.

To say that a surface is "two-dimensional" means that, about each point, there is a coordinate patch on which a two-dimensional coordinate system is defined. For example, the surface of the Earth is (ideally) a two-dimensional sphere, and latitude and longitude provide coordinates on it — except at the International Date Line and the poles, where longitude is undefined. This example illustrates that not all surfaces admits a single coordinate patch. In general, multiple coordinate patches are needed to cover a surface.

Surfaces find application in physics, engineering, computer graphics, and many other disciplines, primarily when they represent the surfaces of physical objects. For example, in analyzing the aerodynamic properties of an airplane, the central consideration is the flow of air along its surface.

This text uses material from Wikipedia, licensed under CC BY-SA