Scientists move graphene closer to transistor applications

August 29, 2017, Ames Laboratory
Credit: Ames Laboratory

Scientists at the U.S. Department of Energy's Ames Laboratory were able to successfully manipulate the electronic structure of graphene, which may enable the fabrication of graphene transistors— faster and more reliable than existing silicon-based transistors.

The researchers were able to theoretically calculate the mechanism by which graphene's could be modified with . The work will guide experimentally the use of the effect in layers of graphene with rare-earth metal ions "sandwiched" (or intercalated) between graphene and its silicon carbide substrate. Because the metal atoms are magnetic the additions can also modify the use of graphene for spintronics.

"We are discovering new and more useful versions of graphene," said Ames Laboratory senior scientist Michael C. Tringides. "We found that the placement of the rare earth metals below graphene, and precisely where they are located, in the layers between graphene and its substrate, is critical to manipulating the bands and tune the ."

Graphene, a two-dimensional layer of carbon, has been extensively studied by researchers everywhere since it was first produced in 2004 because electrons travel much faster along its surface, making it an ideal potential material for future electronic technologies. But the inability to control or tune graphene's unique properties has been an obstacle to its application.

Density Functional Theory calculations predicted the configurations necessary to demonstrate control of the band gap structure. "Ames Laboratory is very good at synthesis of materials, and we use theory to precisely determine how to modify the atoms," said Minsung Kim, a postdoctoral research associate. "Our calculations guided the placement so that we can manipulate these quantum properties to behave the way we want them to."

The research is further discussed in the paper "Manipulation of Dirac cones in intercalated epitaxial ," published in the journal Carbon.

Explore further: Novel self-assembly can tune the electronic properties of graphene

More information: Minsung Kim et al. Manipulation of Dirac cones in intercalated epitaxial graphene, Carbon (2017). DOI: 10.1016/j.carbon.2017.07.020

Related Stories

Physicists create artificial 'graphene'

February 2, 2016

An international group of physicists led by the University of Arkansas has created an artificial material with a structure comparable to graphene.

Strong bonds between rare-earth metals and graphene

September 28, 2011

(PhysOrg.com) -- Transistors and information storage devices are getting smaller and smaller. But, to go as small as the nanoscale, scientists must understand how just a few atoms of metals behave when deposited on a surface. 

Recommended for you

Squid could provide an eco-friendly alternative to plastics

February 21, 2019

The remarkable properties of a recently-discovered squid protein could revolutionize materials in a way that would be unattainable with conventional plastic, finds a review published in Frontiers in Chemistry. Originating ...

Female golden snub-nosed monkeys share nursing of young

February 21, 2019

An international team of researchers including The University of Western Australia and China's Central South University of Forestry and Technology has discovered that female golden snub-nosed monkeys in China are happy to ...

When does one of the central ideas in economics work?

February 20, 2019

The concept of equilibrium is one of the most central ideas in economics. It is one of the core assumptions in the vast majority of economic models, including models used by policymakers on issues ranging from monetary policy ...

In colliding galaxies, a pipsqueak shines bright

February 20, 2019

In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
not rated yet Aug 30, 2017
"...which may enable the fabrication of graphene transistors..."
Graphene transistors already exist

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.