Laser-scribed disordered graphene significantly improves sodium-ion battery capacity

July 30, 2018, King Abdullah University of Science and Technology
Laser-scribed disordered graphene significantly improves sodium-ion battery capacity
Laser treatment of a polymer coating on copper creates nitrogen-doped laser-scribed graphene (NLSG) for use as a sodium-ion battery anode. Credit: Wiley-VCH Verlag GmbH & Co. KGaA. Image created by Xavier Pita

Sodium-ion batteries have potential to replace the currently used lithium-ion batteries by using the cheaper (less than a thirtieth of the cost of lithium) and more abundant sodium resource. This has particular potential in Saudi Arabia, where sodium is readily available and easily extracted as a byproduct of water desalination, a significant source of potable water in the country.

Yet normal graphite, the dominant anode material in , struggles to store or intercalate sodium ions because sodium ions are larger than lithium ions. Hard is a type of disordered graphite that can store more , hence increasing battery capacity. The problem is that making hard carbon requires temperatures of almost 1000°C.

The KAUST team led by Husam Alshareef has developed a process using a simple bench-top laser to make three-dimensional hard carbon directly on copper collectors without excessive temperatures or additional coating steps.

The team formed a polymer (urea-containing polyimide) sheet on copper and then exposed this sheet to strong laser light. By introducing nitrogen gas during the process, the team could replace some of the carbon atoms with nitrogen atoms, reaching an extremely high nitrogen level (13 atomic percent), which is unattainable by other techniques. Thus, the three-dimensional graphene was more conductive, had expanded atomic spacing, and was directly bonded to the copper current collectors, eliminating the need for additional processing steps.

"We wanted to find a way to make three dimensional hard carbons without having to excessively heat our samples. This way we could form the hard carbon directly on copper collectors," said Fan Zhang, a Ph.D. student in Alshareef's group.

The KAUST researchers fabricated using their laser-formed anode material. Their device exhibited a coulombic efficiency that exceeds most reported carbonaceous anodes, such as hard and soft carbon, and a sodium-ion capacity better than most previous carbon anodes in -ion batteries.

"I enjoyed learning from every member of Prof. Alshareef's group, especially Fan Zhang, who was my closest mentor," said Eman Alhajji, a KAUST Gifted Student Program (KGSP) intern and current undergraduate student at North Carolina State University, USA. Eman will join the group as a Ph.D. student next fall.

"Zhang and Alhajji set an admirable example of productive collaboration between KAUST graduate students and visiting KGSP interns. Their work opens a new direction in battery research, which can be extended to other energy-storage technologies," said Alshareef.

Explore further: Sodium-based batteries could make your smartphone cheaper and cleaner

More information: Fan Zhang et al. Highly Doped 3D Graphene Na-Ion Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient, Advanced Energy Materials (2018). DOI: 10.1002/aenm.201800353

Related Stories

High storage batteries from sodium ion batteries

October 26, 2016

The mechanism of sodium ion storage in an important two-dimensional material could be a simpler and less toxic route to cheaper batteries, a team of KAUST researchers discovered.

Team develops sodium ion batteries using copper sulfide

April 18, 2018

A KAIST research team recently developed sodium ion batteries using copper sulfide anode. This finding will contribute to advancing the commercialization of sodium ion batteries (SIBs) and reducing the production cost of ...

Making sodium-ion batteries that last

February 15, 2017

Lithium-ion batteries have become essential in everyday technology. But these power sources can explode under certain circumstances and are not ideal for grid-scale energy storage. Sodium-ion batteries are potentially a safer ...

Komaba Group reports sodium ion battery progress

September 28, 2012

(Phys.org)—Scientists with a common goal, to figure out an alternative to the lithium ion battery, the main power source of choice, are not giving up. The quarrel is not with the lithium ion battery's performance but in ...

Recommended for you

Permanent, wireless self-charging system using NIR band

October 8, 2018

As wearable devices are emerging, there are numerous studies on wireless charging systems. Here, a KAIST research team has developed a permanent, wireless self-charging platform for low-power wearable electronics by converting ...

Facebook launches AI video-calling device 'Portal'

October 8, 2018

Facebook on Monday launched a range of AI-powered video-calling devices, a strategic revolution for the social network giant which is aiming for a slice of the smart speaker market that is currently dominated by Amazon and ...

Artificial enzymes convert solar energy into hydrogen gas

October 4, 2018

In a new scientific article, researchers at Uppsala University describe how, using a completely new method, they have synthesised an artificial enzyme that functions in the metabolism of living cells. These enzymes can utilize ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.