Research reveals how pollutants affect early embryo development

October 30, 2017, The Francis Crick Institute
Research reveals how pollutants affect early embryo development
Credit: The Francis Crick Institute

Chemicals found in cigarette smoke, factories and incinerators can interfere with the crucial early stages of embryo development, suggests new research from the Francis Crick Institute.

The study, published in Stem Cell Reports, investigated the effects of chemicals that activate the aryl hydrocarbon receptor in mouse and . This receptor is normally switched on and off by natural processes in the body, but aryl hydrocarbons produced by incomplete combustion or industrial processes can keep it switched on. When pregnant mice were exposed to synthetic aryl hydrocarbons, the of their embryos was affected at very early stages.

Problems in embryo development typically lead to miscarriage or stillbirth, while it has been previously shown that embryos that develop after aryl hydrocarbon exposure often have developmental problems including cleft palate. Until now, however, the molecular mechanism by which such chemicals affect development was not known.

The new study has now revealed that aryl hydrocarbons affect the fundamental network that tells in developing embryos which cell type to become.

"Cells in the early embryo all begin as 'totipotent' cells, meaning they can become any cell type in the body or placenta," explains Dr Manolis Gialitakis of the Francis Crick Institute, first author of the paper. "The earliest choice that a cell makes is whether to become an embryonic stem cell, or a cell type that will eventually form part of the placenta. Embryonic stem cells subsequently face the choice of whether to become cells that will form the yolk sac or those that give rise to the embryo.

"By analysing and embryos at different stages of development, we found that aryl hydrocarbons affect both of these fundamental decisions. This as well as other disruptions led to a substantial proportion of embryos failing to develop at all, highlighting the crucial nature of these early differentiation decisions. Embryo development is incredibly complex, so the timing of every cell decision is key to successful development. We identified a wide range of proteins that interact with the aryl hydrocarbon receptor, which allowed us to map out the different processes that are affected when it is abnormally activated."

The aryl receptor (AhR) plays an important role in human health, and low levels of aryl hydrocarbons are all around us naturally. However, there are many sources of synthetic aryl hydrocarbons such as dioxins that are not metabolized and can stay in the human body for a long time, causing serious damage.

"It's striking to see how fundamentally these chemicals can alter embryo development," says Dr Gialitakis. "As they are found in tobacco smoke, this could help to explain how smoking can lead to birth defects and lower fertility rates. As these chemicals can stay in the body for a long time, smokers who want to have children should consider quitting several months before trying to conceive."

Dr Brigitta Stockinger, senior author of the paper from the Francis Crick Institute, says: "We already know that AhR acts as a vital control centre to maintain our immune defences, particularly in our intestines, lungs and skin. This latest study builds on our knowledge and shows that exposure of stem cells to AhR activation, particularly if prolonged and non-physiological, plays a detrimental role in the earliest days of . We are now looking at the consequences of transient AhR activation by physiological ligands compared with prolonged activation by chemicals that are difficult to metabolise."

Explore further: Genome editing reveals role of gene important for human embryo development

More information: Manolis Gialitakis et al. Activation of the Aryl Hydrocarbon Receptor Interferes with Early Embryonic Development, Stem Cell Reports (2017). DOI: 10.1016/j.stemcr.2017.09.025

Related Stories

New tools to study the origin of embryonic stem cells

March 23, 2017

Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo. These cells are thought to possess great potential for replacing damaged tissue but ...

Recommended for you

Scientists see human immune response in the fruit fly

June 19, 2018

Washington State University researchers have seen how both humans and fruit flies deploy a protein that a plays a critical role in their immune responses to invading bacteria. The discovery gives scientists evolutionary insight ...

World's first known manta ray nursery discovered

June 19, 2018

A graduate student at Scripps Institution of Oceanography at the University of California San Diego and colleagues from NOAA's Office of National Marine Sanctuaries have discovered the world's first known manta ray nursery.

Road rules for gene transfer are written in DNA

June 19, 2018

A new discovery suggests that bacteria's ability to transfer genes, like those associated with antibiotic resistance, are governed by a previously unknown set of rules that are written in the DNA of the recipient.

Blue gene regulation helps plants respond properly to light

June 19, 2018

Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) have discovered a process through which gene expression in plants is regulated by light. Published in Proceedings of the National Academy of Sciences ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.