Researchers advance groundbreaking 'water-in-salt' lithium ion battery technology

May 12, 2016, University of Maryland

A team of researchers at the University of Maryland (UMD), U.S. Army Research Laboratory (ARL), and colleagues have developed a battery that is at once safer, cheaper, more environmentally friendly, and more powerful—by adding a pinch of salt.

Advancing UMD research on groundbreaking "water-in-salt" lithium ion , the researchers found that adding a second salt to the water-based (aqueous) batteries increased their energy capacity, but without the fire risk, poisonous chemicals, and environmental hazards of lithium ion batteries that dominate the portable electronics market.

"Our purpose was to invent an aqueous lithium ion battery that is absolutely safe, green, and cost-efficient, while delivering energy density comparable to commercial lithium ion batteries," said Liumin Suo, postdoctoral research associate in UMD's Department of Chemical and Biomolecular Engineering. "We believe our batteries will have very wide applications including electric energy storage, airspace devices, and portable electric devices."

A peer-reviewed paper based on the study was published recently in the journal Angewandte Chemie as a Very Important paper (VIP).

The team of researchers—led by Chunsheng Wang, professor in UMD's Department of Chemical & Biomolecular Engineering, and Kang Xu, senior research chemist and fellow at ARL—said their work demonstrates a major advance in water-based batteries by further increasing the voltage, or power, of an aqueous battery.

"Our invention has the potential to transform the energy industry by replacing flammable, toxic lithium with our safe, green water-in-salt battery," said Wang. "This technology may increase the acceptance and improve the utility of battery-powered electric vehicles, and enable large-scale energy storage of intermittent energy generators like solar and wind."

The researchers said their technology holds great promise, particularly in applications that involve large energies at kilowatt or megawatt levels and in applications where battery safety and toxicity are primary concerns, including non-flammable batteries for airplanes, naval vessels, or spaceships.

"All this leads to a safe lithium ion technology that is free of any fire and explosion hazard, benefiting both the soldier and the civilian," said Arthur Cresce, an author on the paper and research chemist with ARL. "For instance, units of the electrical microgrids, which would manage energy produced and harvested in camp, could rely on a WiSE-based battery bank to store and release electricity without the safety and environmental concerns, increasing the camp's self-reliant capability."

"The water-in-salt electrolytes developed by this group have unexpectedly opened the possibility of high-voltage aqueous electrochemical systems, impervious to water splitting reactions. The new water-in-bisalt electrolytes, incorporating two or more lithium salts, may soon lead to safer, cheaper, and longer lasting water-based batteries," said Massachusetts Institute of Technology (MIT) Professor Martin Bazant, a leading researcher who was not involved in the study.

At UMD's 2016 Celebration of Innovation and Partnerships on May 9, Wang, Xu, Suo, and the rest of their research team won Invention of the Year: Physical Sciences for their groundbreaking "water-in-salt" aqueous technology.

Explore further: Salty solution to better, safer batteries

More information: Liumin Suo et al. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte, Angewandte Chemie International Edition (2016). DOI: 10.1002/anie.201602397

Related Stories

Salty solution to better, safer batteries

November 19, 2015

A team of researchers from the University of Maryland (UMD) and the U.S. Army Research Laboratory (ARL) have devised a groundbreaking "Water-in-Salt" aqueous Lithium ion battery technology that could provide power, efficiency ...

New battery technologies take on lithium-ion

July 22, 2015

Lithium-ion batteries remain the technology-of-choice for today's crop of electric cars, but challengers are revving up to try to upset the current order. An article in Chemical & Engineering News (C&EN), the weekly newsmagazine ...

New low-cost battery could help store renewable energy

November 4, 2015

Wind and solar energy projects are growing at a respectable clip. But storing electric power for days when the air is still or when the sun goes down remains a challenge, largely due to cost. Now researchers are developing ...

Recommended for you

Understanding dynamic stall at high speeds

December 18, 2018

When a bird in flight lands, it performs a rapid pitch-up maneuver during the perching process to keep from overshooting the branch or telephone wire. In aerodynamics, that action produces a complex phenomenon known as dynamic ...

Pushing lithium ion batteries to the next performance level

December 13, 2018

Conventional lithium ion batteries, such as those widely used in smartphones and notebooks, have reached performance limits. Materials chemist Freddy Kleitz from the Faculty of Chemistry of the University of Vienna and international ...

Uber filed paperwork for IPO: report

December 8, 2018

Ride-share company Uber quietly filed paperwork this week for its initial public offering, the Wall Street Journal reported late Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.