PRO as a sustainable energy production system is crippled by biofouling

December 29, 2015

Researchers at the Zuckerberg Institute for Water Research at Ben-Gurion University of the Negev (BGU) and Yale University have determined that pressure-retarded osmosis technology is not feasible primarily due to biofouling (the accumulation of organic material as well as different organisms such as algae and bacteria on various surfaces that impairing structures and hinder system performance).

Pressure-retarded osmosis (PRO) is a process that for several decades has been considered to have potential as a sustainable energy source. It utilizes various salinity gradients, such as sea and river water, or desalination brine and wastewater. In PRO, water from a low-salinity feed solution permeates through a into a pressurized, high-salinity draw solution. Power is obtained by depressurizing the draw through a hydro-turbine.

According to the new study published in the journal Environmental Science & Technology, researchers at the Zuckerberg Institute and Yale University found that, "power generation by PRO produces little and next to nothing due to biofouling caused by bacteria that clog the membrane structure and the feed channel." Prior to this study, researchers from Yale reported that this technology is thermodynamically challenging and is hardly viable.

"While the concept of using an 'osmotic gradient' to harness power has existed since the 1970s, our research shows that commercial PRO is currently 'dead in the water'," says Zuckerberg's Dr. Edo Bar-Zeev. "Biofouling is detrimental to the process and can't be mitigated since there are no membranes today that are specifically designed for PRO."

He claims that to make PRO viable, the process requires either sterile streams on both sides or a new membrane design. "These membranes must be dedicated for PRO technology instead of using the current forward osmosis (FO) membranes," Dr. Bar-Zeev explains.

In the study, researchers explored the PRO's efficiency and practicality under biofouling conditions using synthetic wastewater secondary effluents and seawater reverse osmosis (SWRO) desalination brine. Experiments were conducted in a small-scale PRO setup using thin-film composite FO membrane and fabric feed spacers.

"The study showed that organic matter and bacteria in the feed wastewater stream resulted in extreme biofouling development across the feed spacer as well as the membrane support layer, thereby crippling PRO performance," explains Bar-Zeev. "These results will likely extend to other natural waters, such as river waters, where dissolved organic matter and bacteria are also prevalent."

Explore further: Into the mix: Harnessing the energy when freshwater meets the sea

More information: Environmental Science & Technology, dx.doi.org/10.1021/acs.est

Related Stories

New membrane may solve fresh water shortages

November 30, 2015

Researchers at Hiroshima University have developed a technology that improves the removal of salt from seawater, a breakthrough that may alleviate the increasing demand for fresh water in some countries.

Recommended for you

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

US faces moment of truth on 'net neutrality'

December 14, 2017

The acrimonious battle over "net neutrality" in America comes to a head Thursday with a US agency set to vote to roll back rules enacted two years earlier aimed at preventing a "two-speed" internet.

FCC votes along party lines to end 'net neutrality' (Update)

December 14, 2017

The Federal Communications Commission repealed the Obama-era "net neutrality" rules Thursday, giving internet service providers like Verizon, Comcast and AT&T a free hand to slow or block websites and apps as they see fit ...

The wet road to fast and stable batteries

December 14, 2017

An international team of scientists—including several researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory—has discovered an anode battery material with superfast charging and stable operation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.