New desalination technology could answer state drought woes

New desalination technology could answer state drought woes
Could desalination be the answer to California’s drought? As parts of the state become drier, scientists are looking at ways to turn seawater into drinkable water.

Could desalination be the answer to California's drought? As parts of the state become drier, scientists are looking at ways to turn seawater into drinkable water.

Desalination has made headlines in recent months as a possible solution to the state's water shortage. But in addition to being expensive, its byproduct—salty brine—can harm marine life once it's reintroduced into the ocean.

A team of researchers from Humboldt State University and the University of Southern California is hoping to address those concerns with a new process called Reverse Osmosis-Pressure Retarded Osmosis (RO-PRO).

They recently received a $600,000 grant from the California Department of Water Resources to develop a portable, prototype RO-PRO system in Samoa, Calif.—which could lower the cost of desalination and reduce its impact on the environment.

"The high cost and environmental impact of desalination are major issues preventing it from becoming a reliable, drought-resistant water supply," said Andrea Achilli, an Environmental Resources Engineering professor at Humboldt State, who holds a patent on the technology with researchers from the University of Southern California and Colorado School of Mines. "What our system does is address those problems head on."

Desalination plants typically use , a process that pushes saltwater through a membrane to create purified, drinking water. But in addition to being costly, and energy-intensive, reverse osmosis can negatively impact the environment.

New desalination technology could answer state drought woes
The portable, prototype RO-PRO system could lower the cost of desalination and reduce its impact on the environment.

What makes Achilli's system so different is that it uses both reverse osmosis and its opposing process, pressure-retarded osmosis. In PRO, freshwater and seawater are combined in a pressurized chamber, creating water pressure that spins a turbine. Instead of spinning a turbine, when combined with RO, that energy can then be directly used to power the entire system. According to researchers, the process uses 30 percent less energy than traditional desalination methods.

Another benefit of the system is that the highly-concentrated saltwater is eventually diluted back to seawater, reducing environmental harm. "If used on a large scale, it could have a positive environmental effect and result in significant cost and energy savings," Achilli says.

Once the system is completed, it will be housed and tested at the Samoa Pump Mill, where from the Mad River meets the Pacific Ocean. The mill is owned by the Humboldt Bay Harbor District, which is gifting use of its property and electricity for one year. During that time, researchers will test the system and its efficiency to determine whether it's suitable for wider use. After that, they plan to incorporate the technology into existing desalination facilities around the state. "Eventually, we'd like to see the technology built into new plants in California and elsewhere," Achilli says.


Explore further

Study shows forward osmosis desalination not energy efficient

Provided by Humboldt State University
Citation: New desalination technology could answer state drought woes (2015, February 18) retrieved 16 October 2019 from https://phys.org/news/2015-02-desalination-technology-state-drought-woes.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
56 shares

Feedback to editors

User comments

Feb 19, 2015
Desalinization of sea water is very energy intensive and expensive compared to purifying waste water. That is a far more practical answer. Besides birds and fish poop in sea water all the time...;-)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more