Tiny power generator runs on spit

Apr 03, 2014
Tiny power generator runs on spit
This is a micro microbial fuel cell with saliva input ports. Credit: Bruce Logan, Penn State

Saliva-powered micro-sized microbial fuel cells can produce minute amounts of energy sufficient to run on-chip applications, according to an international team of engineers.

Bruce E. Logan, Evan Pugh Professor and Kappe Professor of Environmental Engineering, Penn State, credited the idea to fellow researcher Justine E. Mink. "The idea was Justine's because she was thinking about sensors for such things as glucose monitoring for diabetics and she wondered if a mini microbial could be used," Logan said. "There is a lot of organic stuff in saliva."

Microbial fuel cells create energy when bacteria break down organic material producing a charge that is transferred to the anode. Logan, who has studied microbial fuel cells for more than ten years, usually looks to wastewater as a source for both the organic material and the bacteria to create either electricity or hydrogen, but these tiny machines are a bit different.

"By producing nearly 1 microwatt in power, this saliva-powered, micro-sized MFC already generates enough power to be directly used as an energy harvester in microelectronic applications," the researchers report in a recent issue of Nature Publishing Group's Asia Materials.

Tiny power generator runs on spit
Schematic of micro microbial fuel cell showing saliva input ports, anode, cathode and chamber. Image: Bruce Logan/Penn State

The researchers believe that the emergence of ultra-low-power chip-level biomedical electronics, devices able to operate at sub-microwatt power outputs, is becoming a reality. One possible application would be a tiny ovulation predictor based on the conductivity of a woman's saliva, which changes five days before ovulation. The device would measure the conductivity of the saliva and then use the saliva for power to send the reading to a nearby cell phone.

Biomedical devices using micro-sized microbial fuel cells would be portable and have their energy source available anywhere. However, saliva does not have the type of bacteria necessary for the fuel cells, and manufacturers would need to inoculate the devices with bacteria from the natural environment.

In the past, the smallest fuel cells have been two-chambered, but this micro version uses a single chamber with a graphene- rather than platinum-coated carbon cloth anode and an air cathode. Air cathodes have not been used before because if oxygen can get to the bacteria, they can breath oxygen and do not produce electricity.

"We have previously avoided using air cathodes in these systems to avoid oxygen contamination with closely spaced electrodes," said Logan. "However, these micro cells operate at micron distances between the electrodes. We don't fully understand why, but bottom line, they worked."

The anode is actually composed of carbon nanomaterial graphene. Other microbial fuel cells used graphene oxide, but the researchers showed that pure multi-layered graphene can serve as a suitable anode material.

While the researchers tested this mini using acetate and human saliva, it can use any liquid with sufficient .

Explore further: Solar-induced hybrid fuel cell produces electricity directly from biomass

add to favorites email to friend print save as pdf

Related Stories

Bacteria -- energy producers of the future? (w/ video)

Aug 22, 2011

All of us use water and in the process, a lot of it goes to waste. Whether it goes down drains, sewers or toilets, much of it ends up at a wastewater treatment plant where it undergoes rigorous cleaning before it flows back ...

Microbes turn electricity directly to methane

Mar 30, 2009

(PhysOrg.com) -- A tiny microbe can take electricity and directly convert carbon dioxide and water to methane, producing a portable energy source with a potentially neutral carbon footprint, according to a ...

Recommended for you

Toyota, Grenoble set stage for test in ride-sharing

Sep 14, 2014

Toyota is testing ride-sharing. As simple as that may sound, the experiment indicates an innovative model for the future of urban transportation. The Grenoble metro area could turn out to be the trial stage ...

Sparks fly as Di Grassi wins first electric race

Sep 14, 2014

A spectacular crash at the last corner that ended leader Nicolas Prost's race and sent ex-F1 driver Nick Heidfeld flying into the fencing gave Brazil's Lucas di Grassi victory in the first ever Formula E ...

First electric car race to zoom off on Saturday

Sep 12, 2014

Formula E will be a laboratory for new technology, according to motor sport great Alain Prost, while Bruno Senna said drivers will face a "lottery" when electric car racing kicks off in Beijing Saturday.

User comments : 0