Waste that is brimming with energy

Nov 21, 2013
Physicist Dr. Josef Pal examines the impact of different magnetic fields on liquid metals at the HZDR's MULTIMAG facility. Credit: HZDR/Frank Bierstedt

Together with the Italian GARBO corporation, the University of Greenwich, United Kingdom, and the University of Padua, Italy, as well as the midsized company EAAT from Chemnitz, Germany, the HZDR researchers are working on a technological solution for waste treatment.

Silicon is the material of choice on the fast growing solar market because it converts solar energy into electric power in a relatively efficient manner. When producing , though, the photovoltaic industry loses about 50 percent of the valuable original material. The objective of the EU project SIKELOR, which is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), is to process silicon waste in an industrially viable and a resource-friendly manner.

The semiconductor material silicon is used as very thin wafers in standard solar modules. But a substantial portion of the silicon, which was won at the expense of high energy input, is lost during production. When cutting the wafers out of large blocks, fine silicon powder is produced as a by-product; and this waste amounts to nearly as much as the material which is found in the end-product. This is due to the fact that the saw which is used in this process – for example, a wire made of silicon carbide or of diamond – is about as thick as a single wafer. Together with the Italian GARBO corporation, the University of Greenwich, United Kingdom, and the University of Padua, Italy, as well as the midsized company EAAT from Chemnitz, Germany, the HZDR researchers are working on a technological solution for .

"The silicon chippings in the sawdust need to be as free as possible of impurities prior to re-melting. That's why we have to first separate them from the fluid that is used as part of the sawing process. Next, the dust is condensed and molten. However, the resulting dust contains impurities. Since the chippings' surface is large compared to their volume, oxidation takes place such that a lot of is allowed to build up. In addition, carbon particles end up in the sawdust and, during melting, is produced as an unwanted waste product. Our goal is to come up with an economically feasible process for industrial recycling of silicon waste," notes Dr. Sven Eckert who coordinates the project at the HZDR. Just recently, he met in Brussels with the coordinators of 13 other projects revolving around resource efficiency which had also been selected. The European Union supports these projects with a total of 40 million euros.

The SIKELOR (Silicon kerf loss recycling) project, which is scheduled to run for three years and is funded with 1.4 million euros, is to lead to an industry-compatible process. Electromagnetic stirring and separating plays a special role in this process. "We're addressing specifically the question of how to configure the magnetic field and the coil so that we can stir the impure mixture as efficiently as possible. Our current focus is on separating the impurities with the help of electromagnetic stirring and having them migrate to the edge where they can be concentrated and removed," explains Dr. Eckert. But the desired result can only be achieved through a tricky combination of the magnetic field parameters. That's why a demonstrator is to be built at the HZDR which will permit the researchers to investigate the individual process steps with the help of a model alloy similar to silicon. The insights thus gained will then be applied in a second demonstrator at the University of Padua. That's where the silicon, which melts at 1,410 degrees Celsius, can be processed. The Chemnitz-based EAAT corporation is designing and will deliver the requisite power supply system capable of operating at different heating stages while at the same time permitting different frequencies to be set for the magnetic fields.

Currently, the photovoltaic modules installed in Germany have a combined output of approximately 32 gigawatts; the branch plans to expand this output to more than 200 gigawatts. Innovative concepts which help improve the degree of efficiency continue to be in great demand. If the SIKELOR project manages to successfully process the raw material which accumulates as dust during wafer production, then the solar industry will be able to reduce its costs. Currently, is traded on the global market for about 18 dollars per kilogram – but experts anticipate a considerable increase over the next few years. The partners of the SIKELOR project anticipate a price of only ten dollars per kilogram of recyclable material for their recycling procedure.

Explore further: Recycling Europe's three million tonnes of tyre waste

add to favorites email to friend print save as pdf

Related Stories

Recycling Europe's three million tonnes of tyre waste

Jun 14, 2013

With up to 70 percent of used tyres ending up in landfills, there is an opportunity to find other ways of recycling this material, and in turn reduce the environmental damage. The EU-funded TyGRE project ...

Saws made of carbon

Aug 01, 2013

More material could be saved when manufacturing wafers in future. Ultra-thin saws made of carbon nanotubes and diamond would be able to cut through silicon wafers with minimum kerf loss. A new method makes ...

Silicon carbide solutions to solar challenges revealed

Sep 11, 2012

STMicroelectronics is revealing innovations in silicon carbide devices at Solar Power International (SPI) 2012 that enable systems producers to build ultra-efficient electronics for converting raw solar energy ...

Recommended for you

Ikea buys wind farm in Illinois

Apr 15, 2014

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

A homemade solar lamp for developing countries

Apr 14, 2014

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

Power arm band for wearables harvests body heat

Apr 12, 2014

(Phys.org) —A group of Korean researchers have turned their focus on supplying a reliable, efficient power source for wearables. Professor Byung Jin Cho of the Korea Advanced Institute of Science and Technology ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...