Combining chromatography, proteomics and database searching identifies hard-to-find heme proteins

May 14, 2013 by Kristin Manke
Combining chromatography, proteomics and database searching identifies hard-to-find heme proteins
Detection of heme c peptides (red) and all peptides (black) by LC-MS before (top) and after (bottom) HAC.

(Phys.org) —Iron is a critical part of many biological processes; however, it is often not biologically available or it can be toxic in high quantities. So, biological systems have developed intricate methods for its use and storage. Scientists at DOE's Pacific Northwest National Laboratory combined chromatography, proteomics and a database search strategy to find higher numbers of modified iron-containing protein fragments (called peptides) that play an important role in respiration, metal reduction and nitrogen fixation by environmental microbes. The microbes containing these proteins are being studied because of their potential use in microbial fuel cells and electrosynthesis of valuable biomaterials.

The modifying group of atoms, called heme c, is an important iron-containing post-translational modification found in many proteins. Until recently, it was hard to find. The PNNL scientists combined a heme c protein strategy called histidine affinity chromatography (HAC) with enhanced database searching. This combination confidently identified heme c peptides in -tandem mass spectrometry (LC-MS/MS) experiments by as much as 100-fold in some cases. They used proteomics capabilities housed at DOE's EMSL, located at PNNL.

"Several proteomics studies have analyzed the expression of c-type cytochromes under various conditions," said PNNL researcher Dr. Eric Merkley, lead author of a paper that appeared in the Journal of Proteome Research. "A shared feature of these studies is that the cytochrome-rich fractions, the cell envelope or extracellular polymeric substance, were purified and explicitly analyzed to efficiently detect cytochromes. Analyses of large-scale proteomics datasets have typically suggested that c-type cytochromes, particularly the heme c peptides, are under-represented."

Many environmentally important microbes and microbial communities are rich in c-type cytochromes. Combining HAC and data analysis tailored to the unique properties of heme c peptides should enable more detailed study of the role of c-type cytochromes in these microbes and .

The scientists adapted HAC to enrich heme c , or peptides, from purified bovine heart cytochrome c, decaheme cytochromes from Sideroxydans lithotrophicus ES-1 and Shewanella oneidensis MR-1, and from mixtures of Escherichia coli peptides with a standard heme peptide at varying ratios. LC-MS/MS analysis of the samples yielded significantly more matches to heme c peptides than in samples not enriched by HAC.

They also developed a proteomics database search strategy that accounts for the unique physicochemical properties of heme c peptides. Combining affinity chromatography and heme-specific informatics yielded 20- to 100-fold increases in the number of peptide-spectrum matches for bovine cytochrome c.

The scientists are applying and evaluating the methodology for whole-proteome analysis of metal-reducing bacteria. Supplemented by additional fractionation steps, the method could be applied to more complex samples. In addition, HAC combined with mass spectrometric or other methods could become a useful tool for studying the biology of c-type cytochrome biogenesis.

Explore further: Fighting bacteria—with viruses

add to favorites email to friend print save as pdf

Related Stories

Unique E. coli protein may be not after all

Jan 03, 2012

A bacterial protein recently thought to be a unique mechanism for utilizing iron may not be after all. Researchers from the University of Georgia, the Fellowship for Interpretation of Genomes, the University of Oklahoma and ...

Clustering is key to lighting up the dark proteome

Aug 04, 2011

(PhysOrg.com) -- A new approach that organizes previously unused mass spectra from proteomics studies gives scientists the ability to use these spectra to gain more information about proteins in a wide range ...

Heme channel found

Dec 17, 2009

In some ways a cell in your body or an organelle in that cell is like an ancient walled town. Life inside either depends critically on the intelligence of the gatekeepers.

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0