Team discovers how a protein finds its way

Apr 29, 2013

(Phys.org) —Proteins, the workhorses of the body, can have more than one function, but they often need to be very specific in their action or they create cellular havoc, possibly leading to disease.

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have uncovered how an enzyme co-factor can bestow specificity on a class of proteins with otherwise nonspecific biochemical activity.

The protein in question helps in the assembly of ribosomes, large macromolecular machines that are critical to protein production and cell growth. This new discovery expands scientists' view of the role of co-factors and suggests such co-factors could be used to modify the activity of related proteins and their role in disease.

"In ribosome production, you need to do things very specifically," said TSRI Associate Professor Katrin Karbstein, who led the study. "Adding a co-factor like Rrp5 forces these enzymes to be specific in their actions. The obvious possibility is that if you could manipulate the co-factor, you could alter , which could prove to be tremendously important."

The new study, which is being published the week of April 29, 2013, in the online Early Edition of the Proceedings of the National Academy of Sciences, sheds light on proteins called DEAD-box proteins, a provocative title actually derived from their . These proteins regulate all aspects of gene expression and , particularly in the production of ribosomes, and are involved in . The link between defects in ribosome assembly and cancer and between DEAD-box proteins and cancer is well documented.

The findings show that the DEAD-box protein Rok1, needed in the production of a small ribosomal subunit, recognizes the RNA backbone, the basic structural framework of nucleic acids. The co-factor Rrp5 then gives Rok1 the ability to target a specific by modulating the structure of Rok1.

"Despite extensive efforts, the roles of these DEAD-box proteins in the assembly of the two ribosomal subunits remain largely unknown," Karbstein said. "Our study suggests that the solution may be to identify their cofactors first."

Explore further: Researchers develop computational model to simulate bacterial behavior

More information: Cofactor-dependent specificity of a DEAD-box protein , PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1302577110

Related Stories

Scientist uncovers switch controlling protein production

Dec 22, 2010

A scientist from the Florida campus of The Scripps Research Institute has discovered a molecular switch that controls the synthesis of ribosomes. Ribosomes are the large machineries inside all living cells that produce proteins, ...

Ancient enzymes function like nanopistons to unwind RNA

Sep 02, 2012

Molecular biologists at The University of Texas at Austin have solved one of the mysteries of how double-stranded RNA is remodeled inside cells in both their normal and disease states. The discovery may have implications ...

Recommended for you

Compound from soil microbe inhibits biofilm formation

11 hours ago

Researchers have shown that a known antibiotic and antifungal compound produced by a soil microbe can inhibit another species of microbe from forming biofilms—microbial mats that frequently are medically harmful—without ...

Researcher among best in protein modeling contests

14 hours ago

A Purdue University researcher ranks among the best in the world in bioinformatics competitions to predict protein structure, docking and function, making him a triple threat in the world of protein modeling.

Survey of salmonella species in Staten Island Zoo's snakes

15 hours ago

For humans, Salmonella is always bad news. The bacterial pathogen causes paratyphoid fever, gastroenteritis and typhoid. But for snakes, the bacteria aren't always bad news. Certain species of Salmonella are a natural part ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.