Making an alternate fuel usable in cars: Researcher tackles natural gas storage

Apr 17, 2013
An example of a metal-organic frameworks (MOF) assembled in Dr. Hongcai Joe Zhou's world-class laboratory within the Texas A&M Department of Chemistry.

When it comes to American consumers' vehicular preferences, Texas A&M University chemist Hongcai Joe Zhou says the choice often boils down to simple economics more so than availability, environment or altruism.

And while passenger vehicles that run on may be an option for the financially well-off, Zhou says a more cost-efficient system will be necessary to drive a nationwide shift from petroleum to cleaner-burning fuels.

Zhou's goal is to solve the technical hurdles related to natural gas storage—answers that bode well for sectors ranging from energy and economics to global relations and preservation.

An illustration of a prototype 6-liter adsorbed natural gas (ANG) fuel tank that relies on innovative advanced porous materials and Texas A&M's proven expertise in metal-organic frameworks (MOF) and porous-polymer networks (PPN) to deliver low-pressure, high-density natural gas storage in vehicles.

"We should invest in this for security reasons so we don't have to rely on countries that may not be our allies for petroleum and for environmental reasons, since a large part of air pollution comes from the transportation sector," Zhou said. "Government policy can help. However, the ultimate determining factor is that it has to be commercially viable. If it's too expensive, few will use it."

Natural gas tanks for passenger vehicles currently are large and clunky, and no one wants to buy an ugly car, Zhou says. He says a key technical hurdle is making the natural gas, which is less dense than petroleum because it's in the gaseous state, fit in roughly the same space that a conventional petroleum gas tank occupies. With the help of a recent $3 million Department of Energy grant, Zhou and his team are collaborating with automobile giant General Motors (GM), Lawrence Berkeley National Laboratory (LBNL) and Research Triangle Institute (RTI) to figure out how to take such a tank from concept to reality.

This video is not supported by your browser at this time.
An interview with Dr. Zhou and members of his lab group about their research and its exciting potential applications.

Creating the necessary infrastructure to store and pump natural gas into vehicles would be prohibitively costly, so Zhou believes the solution is to use the existing natural gas infrastructure that runs through the homes and garages of millions of Americans for household uses, such as heating, cooling and cooking. The problem is that natural gas from those lines comes out at such a low pressure that it needs to be compressed to get it to the pressure it needs to be stored at in the fuel tank, a costly process. The trick: build a fuel tank that can store low-pressure natural gas, which is precisely what Zhou is using his considerable expertise in inorganic chemistry to do.

Zhou and his Texas A&M research group are working to adapt porous material to store a larger amount of the gas in the fuel tank and then let it out when needed. The key is to find the right kind of adsorbent, a type of substance that attaches atoms, ions or molecules to its surface. Zhou specializes in porous polymer networks (PPN) and metal-organic frameworks (MOF), which are crystalline frameworks consisting of metal ions along with ions or molecules that bind to the metal ions called organic ligands. Pores inside the MOF can be used for gas storage.

"This is high-risk, high-reward research," Zhou said. "It's going to take some time to overcome some of the technical challenges."

Explore further: Power-generating urinal pioneered in Britain

add to favorites email to friend print save as pdf

Related Stories

Collaboration puts natural gas on the road

Mar 18, 2013

DOE's Savannah River National Laboratory, in partnership with Ford Motor Company, the University of California-Berkeley, and BASF, has research underway to explore an innovative low-pressure material-based ...

Cheap natural gas makes inroads as US vehicle fuel

Mar 28, 2012

Natural gas, whose price is at record lows thanks to a shale drilling boom, is gaining traction as an alternative energy in the United States, with automakers jumping on the bandwagon.

AT&T to put 8,000 natural-gas vehicles on road

Mar 11, 2009

(AP) -- AT&T Inc. said Wednesday it will spend up to $350 million over five years to buy more than 8,000 Ford Motor Co. vans and trucks, then convert them to run on compressed natural gas.

Porous crystals for natural gas storage

Nov 06, 2011

(PhysOrg.com) -- Porous crystals called metal-organic frameworks, with their nanoscopic pores and incredibly high surface areas, are excellent materials for natural gas storage. But with millions of different ...

Recommended for you

Power-generating urinal pioneered in Britain

20 hours ago

British scientists on Thursday unveiled a toilet that unlocks energy stored within urine to generate electricity, which they hope could be used to light remote places such as refugee camps.

Why your laptop battery won't kill you

Mar 03, 2015

News on Tuesday that major U.S. airlines are no longer going to ship powerful lithium-ion batteries might lead some to fret about the safety of their personal electronic devices.

New incubator network to help clean-energy entrepreneurs

Mar 03, 2015

The Energy Department's National Renewable Energy Laboratory (NREL) and the Electric Power Research Institute (EPRI) have launched the Clean Energy Incubator Network. The program, funded by the Energy Department, aims to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.