A viral grappling hook: Flu virus attacks like a pirate boarding party

Mar 21, 2013 by R. Alan Leo
The three-dimensional structure of influenza virus from electron tomography. Credit: Wikicommons, courtesy of NIH

(Phys.org) —Viruses are biological pirates, invading cells and hijacking their machinery to reproduce and infect again. Research at Harvard Medical School is shedding new light on the battle line where viral and cell membranes meet, and the key role of a protein grappling hook with which the influenza virus commandeers its prize—your cells.

An is a collection of eight enclosed in a lipid-bilayer membrane. When the virus encounters a cell—in your lung, for example—that cell may engulf the virus inside an internal membrane called an . To escape that bubble, the virus fuses its membrane with the endosome's, opening a window into the cell's interior. Once free, the is copied, and the hijacked cell begins to manufacture copies of the virus.

To fuse the two membranes, the virus carries a protein called hemagglutinin (the "H" in H1N1). Triggered by the of an endosome, that protein will extend from the viral membrane and attach, like a grappling hook, to the endosome's membrane. When enough hooks are set, they draw the membranes together until they fuse

The carries about 300 to 400 of these hooks, and virologists had known that several are needed to fuse the membranes. In their latest study, reported last month in the new journal eLife, the HMS team show why.

Using a microscope developed by first author Tijana Ivanovic, a research fellow in the HMS Department of Biological Chemistry and Molecular Pharmacology, the team looked closely at changes in the protein throughout its assault on the endosome. They observed that three or four hemagluttinin hooks must attach in close proximity to fuse the membranes. Without the help of neighbors, an individual hook is too weak to pull the membranes together. Instead, they observed, the protein remains stretched between the two membranes, like a bridge.

And that's an intriguing target, said Stephen Harrison, the study's senior author and the Giovanni Armenise-Harvard Professor of Basic Biomedical Science in the department of and Molecular Pharmacology at HMS.

"That bridge can hang out there for as long as a minute," Harrison said. "That makes it an interesting target for an inhibitor, in principle, at least, because it's there for long enough to be targetable."

The study also appears to settle a question about the nature of the hemagglutinin protein, and viral fusion: Are multiple hooks needed because they interact directly with each other to fuse the membranes, or because that's the number required to pull the somewhat elastic membranes together by brute force? The researchers' answer: brute force.

"That observation helps us distinguish between classes of models for a stage of the fusion process," Harrison said. "That notion is probably fundamental to all viral fusion proteins—or for that matter to most cellular membrane fusion events facilitated by proteins."

Explore further: Genomes of malaria-carrying mosquitoes sequenced

More information: elife.elifesciences.org/content/2/e00333

Related Stories

Scientists discover how dengue virus infects cells

Oct 12, 2010

(PhysOrg.com) -- National Institutes of Health researchers have discovered a key step in how the dengue virus infects a cell. The discovery one day may lead to new drugs to prevent or treat the infection.

Tick-borne encephalitis virus reveals its access code

Oct 20, 2008

Fritz et al. have identified an amino acid switch that flaviviruses flip to gain access to cells. Flaviviruses such as tick-borne encephalitis virus (TBEV), yellow fever, and dengue are dangerous human pathogens. These membrane-encircled ...

Membrane fusion a mystery no more

Jan 24, 2012

The many factors that contribute to how cells communicate and function at the most basic level are still not fully understood, but researchers at Baylor College of Medicine have uncovered a mechanism that helps explain how ...

Driving membrane curvature

Jun 14, 2012

(Phys.org) -- In biological systems, membranes are as important as water. They form the barrier between the inner world, within our cells, where we perform the chemical reactions of life, and the outside environment.

Scientists Reveal a Virus’ Secret Weapon

Jan 18, 2007

It takes more than just breaking and entering for a virus to successfully invade a cell. Getting to the cell’s center—where the host cell’s machinery will be co-opted to make more virus—requires navigating obstacles ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

9 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.