A new global warming culprit: Dam drawdowns

August 8, 2012

Washington State University researchers have documented an underappreciated suite of players in global warming: dams, the water reservoirs behind them, and surges of greenhouse gases as water levels go up and down.

Bridget Deemer, a doctoral student at Washington State University-Vancouver, measured dissolved gases in the of Lacamas Lake in Clark County and found jumped 20-fold when the water level was drawn down. A fellow WSU-Vancouver student, Maria Glavin, sampled bubbles rising from the lake mud and measured a 36-fold increase in methane during a drawdown.

Methane is 25 times more effective than carbon dioxide at trapping heat in the atmosphere. And while dams and the water behind them cover only a small portion of the earth's surface, they harbor that can produce large amounts of . There are also some 80,000 dams in the United States alone, according to the U.S. Army Corps of Engineers National Inventory of Dams.

"Reservoirs have typically been looked at as a green energy source," says Deemer. "But their role in greenhouse gas emissions has been overlooked."

Deemer and Glavin's findings will be on display this week in a poster session at the national meeting of the in Portland.

Their efforts are part of a larger attempt to appreciate the role of lakes, reservoirs and streams in releasing greenhouse gases. A study published last year in the journal Science conservatively estimated that the ability of to act as carbon sinks, storing greenhouse gases, could be one-fourth less than estimated once emissions from reservoirs are considered.

The WSU-Vancouver work is the first to actually demonstrate and quantify the relationship between water-level drawdowns and greenhouse gas releases, says John Harrison, Deemer and Glavin's advisor and an assistant professor of Earth and Environmental Sciences.

The research could lead to different ways of managing drawdowns, he says, as emissions may be higher in summer months, when warmer temperatures and low oxygen conditions in bottom waters stimulate the microbial activity that produces greenhouse gases.

"We have the ability to manage the timing, magnitude and speed of reservoir drawdowns, which all could play a role in how much methane gets released to the atmosphere," Harrison says.

Managers can also consider the optimal time to take out a dam, Deemer says. While a dam removal may lead to some initially, she says it will be a one-time occurrence, while emissions can recur with regular drawdowns. The ability of soils and plants to store greenhouse gases could also make reservoir decommissioning a net sink, she says, but researchers "simply don't know at this point."

With funding, Deemer now plans to look at three other reservoirs in Oregon and northern California's Klamath basin.

Explore further: U.S. greenhouse emissions up 1.7 percent

Related Stories

New research questions hydroelectric emissions

October 11, 2010

Scientists have found that some reservoirs formed by hydroelectric dams emit more greenhouse gases than expected, potentially upsetting the climate-friendly balance of hydroelectric power.

Greenhouse gas impact of hydroelectric reservoirs downgraded

August 1, 2011

An international team of scientists has amassed the largest data set to date on greenhouse gas emissions from hydroelectric reservoirs. Their analysis, published today in the online version of Nature Geoscience, posits that ...

Greenhouse gases: The measurement challenge

August 17, 2011

The continuing increase in the level of carbon dioxide and other "greenhouse gases" in the Earth's atmosphere has been identified as a cause for serious concern because it may radically accelerate changes in the Earth's climate. ...

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

'Carbon sink' detected underneath world's deserts

July 28, 2015

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.