Copper-based materials show strange spin states

Mar 28, 2012 By Jared Sagoff
New research shows how transitions of state work in very simple lattices primarily composed of copper.

(PhysOrg.com) -- Just as water, ice, and steam are all phases of the same material that are influenced by temperature and pressure, new research shows how transitions of state work in very simple lattices primarily composed of copper.

When it comes to trying to understand a variety of different molecular phenomena, like magnetism and superconductivity, researchers look to the "spin states" of located on a . Unlike many lattice studies, which look at the position of particles or in , a new experiment performed at the U.S. Department of Energy’s Argonne National Laboratory investigated the response of more simple two-dimensional lattices to extreme pressures.

The study’s lead author, Argonne and University of Chicago physicist Sara Haravifard, explained that the research experimentally proved a result that had heretofore only been expected theoretically. "It’s important to understand how spins interact with each other so we can get a picture of the behavior of more complicated systems," she said.

The material under study, strontium borate, exhibits two separate ground states. In one, the cumulative spins are zero, so the material is not . In the other, the system will go into an ordered state, and the material exhibits a special form of magnetism known as "antiferromagnetism."

According to Haravifard, the spin structure of the material is primarily controlled by the quantum mechanical relationships between the copper molecules, which in turn influences which of two different ground states the lattice will most likely occupy. "The answer to the question of how the material will look really depends on the interactions between each copper’s nearest neighbors," she said.

The high-energy X-rays produced by Argonne’s Advanced Photon Source reveal only part of the material’s characteristics. "In this case X-rays can ‘see’ the crystal structure of the lattice, not the magnetism," Haravifard said.

However, she added that both the lattice and the magnetic behavior evolved in tandem with temperature. Haravifard and her team used diamond anvil cells to generate the extreme pressures necessary to observe the change in the ground state.

"What’s important to realize is that if we can understand exactly how the material changes as we adjust the applied pressure, we can control the formation of the different ground states," she said. "In this system, what nature told us was that there is a very strong magnetic and lattice-structure coupling."

In the long-term, Haravifard’s research into spin states could "bridge the gap" to new classes of exotic materials with a range of "tunable," or controllable, properties. Similar behaviors have been shown in high-temperature superconductors, and the manipulations performed in the new study "supplement our strong theoretical understanding of these ," Haravifard said.

Explore further: Synthesis of a new lean rare earth permanent magnetic compound superior to Nd2Fe14B

More information: An article based on the study recently appeared in the Proceedings of the National Academy of Sciences.

Related Stories

Magnetic switching under pressure

Dec 03, 2010

(PhysOrg.com) -- A material’s properties are a critical factor in the way that material can be used for practical applications. Magnetism is one such property, and magnetic switches are key components ...

Superconductivity's third side unmasked

Jun 17, 2011

The debate over the mechanism that causes superconductivity in a class of materials called the pnictides has been settled by a research team from Japan and China. Superconductivity was discovered in the pnictides ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

14 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

14 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

15 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

kaasinees
Mar 28, 2012
This comment has been removed by a moderator.
Setooie
1 / 5 (1) Apr 13, 2012
Thanks a lot buddy. Its such a great post.

_________________________________________________________
http://thelegendofkorraepi1and2.squarespace.com/
http://avatarthelastairbenderseason4episode1and2.webstarts.com/