Related topics: atoms · graphene

Methane-consuming bacteria could be the future of fuel

Known for their ability to remove methane from the environment and convert it into a usable fuel, methanotrophic bacteria have long fascinated researchers. But how, exactly, these bacteria naturally perform such a complex ...

Mining microbial treasures from toxic sites

Filled with a noxious brew of copper, cadmium and arsenic, with a pH rivaling that of sulfuric acid, Montana's Berkeley Pit seems inhospitable to life. Nonetheless, scientists have discovered microorganisms in this abandoned ...

Researchers modify magnetic behavior of exotic materials

People are not the only ones to be occasionally frustrated. Some crystals also show frustrations. They do so whenever their elementary magnets, the magnetic spins, cannot align properly. Cesium copper chloride (Cs2CuCl4) ...

Heterogeneous catalyst goes enzymatic

What if there were no tunnels in the Swiss Alps? Anyone trying to travel through them would have to go up and down hills and zigzag around the ranges. A lot more energy and time is saved by passing through a tunnel than climbing ...

page 1 from 23

Copper

Copper (pronounced /ˈkɒpər/) is a chemical element with the symbol Cu (Latin: cuprum) and atomic number 29. It is a ductile metal with very high thermal and electrical conductivity. Pure copper is rather soft and malleable and a freshly-exposed surface has a pinkish or peachy color. It is used as a thermal conductor, an electrical conductor, a building material, and a constituent of various metal alloys.

Copper metal and alloys have been used for thousands of years. In the Roman era, copper was principally mined on Cyprus, hence the origin of the name of the metal as Cyprium, "metal of Cyprus", later shortened to Cuprum. There may be insufficient reserves to sustain current high rates of copper consumption. Some countries, such as Chile and the United States, still have sizable reserves of the metal which are extracted through large open pit mines.

Copper compounds are known in several oxidation states, usually 2+, where they often impart blue or green colors to natural minerals such as turquoise and have been used historically widely as pigments. Copper as both metal and pigmented salt, has a significant presence in decorative art. Copper 2+ ions are soluble in water, where they function at low concentration as bacteriostatic substances and fungicides. For this reason, copper metal can be used as an anti-germ surface that can add to the anti-bacterial and antimicrobial features of buildings such as hospitals. In sufficient amounts, copper salts can be poisonous to higher organisms as well. However, despite universal toxicity at high concentrations, the 2+ copper ion at lower concentrations is an essential trace nutrient to all higher plant and animal life. In animals, including humans, it is found widely in tissues, with concentration in liver, muscle, and bone. It functions as a co-factor in various enzymes and in copper-based pigments.

This text uses material from Wikipedia, licensed under CC BY-SA