The great gas hydrate escape

Jan 18, 2012
The methane trapped in frozen water burns easily, creating ice on fire.

For some time, researchers have explored flammable ice for low-carbon or alternative fuel or as a place to store carbon dioxide. Now, a computer analysis of the ice and gas compound, known as a gas hydrate, reveals key details of its structure. The results show that hydrates can hold hydrogen at an optimal capacity of 5 weight-percent, a value that meets the goal of a Department of Energy standard and makes gas hydrates practical and affordable.

The analysis is the first time researchers have accurately quantified the molecular-scale interactions between the gases -- either hydrogen or methane, aka natural -- and the that form cages around them. A team of researchers from the Department of Energy's Pacific Northwest National Laboratory published the results in Chemical Physics Letters online December 22, 2011.

The results could also provide insight into the process of replacing methane with in the naturally abundant "water-based reservoirs," according to the lead author, PNNL chemist Sotiris Xantheas.

"Current thinking is that you need large amounts of energy to push the methane out, which destroys the scaffold in the process," said Xantheas. "But the computer modeling shows that there is an alternative low energy pathway. All you need to do is break a single hydrogen bond between water molecules forming the cage -- the methane comes out, and then the hydrate reseals itself."

Cagey Ice

-- especially , which store natural gas -- look like ice but actually hold burnable fuel. Naturally found deep in the ocean, water and gas interweave in the hydrates, but little is known about their chemical structure and processes occurring at the molecular level. They have been known to cause problems for the because they tend to clog pipes and can explode. A methane hydrate produced the bubble of methane gas that contributed to 2010's .

This video is not supported by your browser at this time.
This is a computer simulation of methane, also known as natural gas, escaping from a methane hydrate. Many of these methane hydrate subunits combine to form a chunk of ice that burns, and this simulation shows how methane can get out without collapsing the entire structure. Red-and-silver water molecules form a cage around two blue-and-silver methane molecules. Two methane molecules are too tight a fit, so a low-energy hydrogen bond -- the red dotted lines -- between two water molecules breaks. This allows the water molecule to swing open like a gate as the methane makes a dash for it. The water molecule swings back into place, the hydrogen bond re-forms, and the methane hydrate remains stable. Credit: Sotiris Xantheas, PNNL

In previous work, Xantheas and colleagues used computer algorithms and models to examine the water-based, ice-like scaffold that holds the gas. Water molecules form individual cages made with 20 or 24 molecules. Multiple cages join together in large lattices. But those scaffolds were empty in the earlier analysis.

To find out how fuels can be accommodated inside the water cages, Xantheas and PNNL colleague Soohaeng Yoo Willow built computer models of the cages with either hydrogen gas -- in which two hydrogen atoms are bound together -- or , a small molecule made with one carbon and four hydrogen atoms.

In the hydrogen hydrates, which could potentially be used as materials for hydrogen fuel storage, a small hollow cage made from 20 water molecules could hold up to a maximum of five hydrogen molecules and a larger cage made from 24 water molecules could hold up to seven.

The maximum storage capacity equates to about 10 weight-percent, or the percentage of hydrogen by mass in the chunks of ice, although packing hydrogen in that tight puts undue strain on the system. The Department of Energy's goal for hydrogen storage -- to make the fuel practical -- is above 5.5 weight-percent.

Experimentally, hydrogen storage researchers typically measure much less storage capacities. The computer model showed them why: The hydrogen molecules tended to leak out of the cages, reducing the amount of hydrogen that could be stored.

The researchers found that adding a methane molecule to the larger cages in the pure hydrogen hydrate, however, prevented the hydrogen gas from leaking out. The computer model showed the researchers that they could store the hydrogen at high pressure and practical temperatures, and release it by reducing the pressure, which melts it.

Water Gates

Understanding how the gas interacts and moves through the cages can help chemists or engineers store gas and remove it at will. Willow and Xantheas' computer simulations showed that hydrogen molecules could migrate through the cages by passing between the figurative bars of the water cages. However, the cages also had gates: Sometimes a low-energy bond between two water molecules broke, causing a water molecule to swing open and let the molecule drift out. The "gate" closed right after the molecule passed through to reform the lattice.

With methane hydrates, some fuel producers want to remove the gas safely to use it. Others see the emptied cages as potential storage sites for carbon dioxide, which could theoretically keep it out of the atmosphere and ocean, where it warms the earth and acidifies the sea. So, Willow and Xantheas tested how methane could migrate through the cages.

The water cages were only big enough to comfortably hold one methane molecule, so the chemists stuffed two methanes inside and watched what happened. Quickly, one of the water molecules forming the cage swung open like a gate, allowing one methane molecule to escape. The gate then slammed shut as the remaining methane scooted into the middle of the cage.

"This process is important because it can happen with natural gas. It shows how methane can move in the natural world," said Xantheas. "We hope this analysis will help with the technical issues that need to be addressed with gas hydrate research and development."

Xantheas said performing computer simulations with carbon dioxide instead of might help determine whether it's chemically feasible to store carbon dioxide in hydrates.

Explore further: World's fastest manufacture of battery electrodes

More information: Soohaeng Yoo Willow and Sotiris S. Xantheas, 2011/12. Enhancement of Hydrogen Storage capacity in Hydrate Lattices, Chem. Phys. Lett. Dec. 22, 2011, doi: 10.1016/j.cplett.2011.12.036

Related Stories

Cold storage solution for global warming?

Feb 07, 2007

Researchers from the University of Leicester and the British Geological Society (BGS) have proposed storing CO2 in huge underground reservoirs as a way of reducing emissions- and have even identified sites in W ...

A new acceleration additive for making 'ice that burns'

Oct 23, 2006

Japanese scientists are reporting discovery of an additive that can speed up the formation of methane hydrates. Those strange substances have sparked excitement about their potential as a new energy resource and a deep freeze ...

Miniature Gas Tank

Jan 28, 2005

Porous networks of organic Van der Waals crystals can selectively store methane and carbon dioxide Washing powders are generally known to consist partially of inorganic zeolites. These aluminosilicates form porous structure ...

Recommended for you

World's fastest manufacture of battery electrodes

19 hours ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

Waste, an alternative source of energy to petroleum

19 hours ago

The group led by Martín Olazar, researcher in the UPV/EHU-University of the Basque Country's Department of Chemical Engineering, is studying the development of sustainable refineries where it is possible ...

Researchers developing new thermal interface materials

20 hours ago

In the microelectronics world, the military and private sectors alike need solutions to technologic challenges. Dr. Mustafa Akbulut, assistant professor of chemical engineering, and two students lead a project ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Jan 18, 2012
a value that meets the goal of a Department of Energy standard and makes gas hydrates practical and affordable.

Which makes hydrate practical? The value of 5 weight-percent (which I assume is 5% weight/volume), or the DoE standard?

After all it was only by a DoE standard that Compact Florescent Lights were made practical.
5 / 5 (1) Jan 19, 2012
(which I assume is 5% weight/volume)

From the article:
The maximum storage capacity equates to about 10 weight-percent, or the percentage of hydrogen by mass in the chunks of ice, although packing hydrogen in that tight puts undue strain on the system. The Department of Energy's goal for hydrogen storage -- to make the fuel practical -- is above 5.5 weight-percent.