Feed additive reduces enteric methane emissions in dairy cows

The enteric methane mitigation potential of 3-nitrooxypropanol (3-NOP) has been confirmed in previous studies. 3-NOP is highly soluble and rapidly metabolized in the rumen. Previous studies have shown a persistent methane ...

Study finds warming peat may boost greenhouse gases

Warming temperatures in cold-climate peatlands may over time trigger decomposition of old, deeply buried peat and increase emissions of climate-harming methane and carbon dioxide into the air, according to a study led by ...

New study reveals cracks beneath giant, methane gushing craters

A paper published in Science in 2017 described hundreds of massive, kilometer-wide craters on the ocean floor in the Barents Sea. Today, more than 600 gas flares have been identified in and around these craters, releasing ...

Detecting methane emissions during COVID-19

While carbon dioxide is more abundant in the atmosphere and therefore more commonly associated with global warming, methane is around 30 times more potent as a heat-trapping gas. Given its importance, Canadian company GHGSat ...

page 1 from 93

Methane

Methane is a chemical compound with the molecular formula CH4. It is the simplest alkane, and the principal component of natural gas. Methane's bond angles are 109.5 degrees. Burning methane in the presence of oxygen produces carbon dioxide and water. The relative abundance of methane and its clean burning process makes it an attractive fuel. However, because it is a gas at normal temperature and pressure, methane is difficult to transport from its source. In its natural gas form, it is generally transported in bulk by pipeline or LNG carriers; few countries transport it by truck.

Methane was discovered and isolated by Alessandro Volta between 1776 and 1778 when studying marsh gas from Lake Maggiore.

Methane is a relatively potent greenhouse gas with a high global warming potential of 72 (averaged over 20 years) or 25 (averaged over 100 years). Methane in the atmosphere is eventually oxidized, producing carbon dioxide and water. As a result, methane in the atmosphere has a half life of seven years.

The abundance of methane in the Earth's atmosphere in 1998 was 1745 parts per billion, up from 700 ppb in 1750. Methane can trap about 20 times the heat of CO2. In the same time period, CO2 increased from 278 to 365 parts per million. The radiative forcing effect due to this increase in methane abundance is about one-third of that of the CO2 increase. In addition, there is a large, but unknown, amount of methane in methane clathrates in the ocean floors. The Earth's crust contains huge amounts of methane. Large amounts of methane are produced anaerobically by methanogenesis. Other sources include mud volcanoes, which are connected with deep geological faults, and livestock (primarily cows) from enteric fermentation.

This text uses material from Wikipedia, licensed under CC BY-SA