Cold storage solution for global warming?

February 7, 2007
Cold storage solution for global warming?
Schematic diagram representing the proposed storage as a liquid and hydrate, with an example image of crystalline carbon dioxide hydrate grown in sediment. Credit: University of Leicester

Researchers from the University of Leicester and the British Geological Society (BGS) have proposed storing CO2 in huge underground reservoirs as a way of reducing emissions- and have even identified sites in Western Europe that would be suitable.

Cold storage solution for global warming?
Thickness of the carbon dioxide hydrate stability zone offshore Western Europe (meters), expressed in blue contoured areas, showing large regions with suitable conditions for storage as a liquid and hydrate. The grey zone is outside the study area. Credit: University of Leicester

Their research, published in the journal, Planet Earth, reveals that CO2 can be contained in cool geological aquifers or reservoirs, where it can remain harmlessly for many thousands of years.

PhD research student, Ameena Camps, is working with Professor Mike Lovell at the University's Department of Geology and with Chris Rochelle at BGS, investigating the storage of CO2.

Storing the gas in a solid form as a gas hydrate, or as a pool of liquid CO2 below a cap of hydrate cemented sediments, is believed to offer an alternative method of geological sequestration to the current practices of storage in warm, deep sediments in the North Sea.

Recently quoted in Planet Earth Ameena Camps explained: "Hydrates (also known as clathrates) are ice-like crystalline minerals that look like normal ice and form when gas and water freeze together at low temperature and high pressure. They are made of a cage of frozen water molecules with the gas molecules trapped inside."

Although gas hydrates were first discovered two centuries ago, the possible use of carbon dioxide hydrate as a means to help resolve problems of global climate change, and of naturally occurring methane hydrate as a future source of energy, have only recently been suggested.

Laboratory experiments carried out as part of Ameena Camps' PhD project have indicated that carbon dioxide hydrate should form stable structures in sediments under oceans. By employing geophysical techniques and computer modelling, Ms Camps has identified a number of sites in Western Europe with the potential to store carbon dioxide by this method.

She is also exploring further implications of her research that may benefit geologists' understanding of the stability of deep submarine slopes and contribute to improvements in global water supplies through further understanding of desalination processes.

Professor Mike Lovell, of the University of Leicester Department of Geology commented: "Ms Camps' work is at the forefront of gas hydrate research, and has produced some very exciting results, highlighting the importance of investment in further studies of hydrates.

"Investigations of natural methane hydrates will help our understanding of their role as a natural hazard, while carbon dioxide hydrates are a potential sink for greenhouse gas emissions. This work also has application in other fields such as space research into hydrates on other planetary bodies."

Source: University of Leicester

Explore further: Massive craters formed by methane blow-outs from the Arctic sea floor

Related Stories

China, Japan extract combustible ice from seafloor

May 19, 2017

Commercial development of the globe's huge reserves of a frozen fossil fuel known as "combustible ice" has moved closer to reality after Japan and China successfully extracted the material from the seafloor off their coastlines.

CO2 clathrate hydrate properties

March 30, 2017

Clathrate hydrates (Fig. 1) are cage-like structures of water molecules that house guest gas species. They form when the gas interacts with ice under high-pressure and low-temperature conditions, and are thought to influence ...

Methane seeps in the Canadian high Arctic

April 13, 2017

Cretaceous climate warming led to a significant methane release from the seafloor, indicating potential for similar destabilization of gas hydrates under modern global warming. A field campaign on the remote Ellef Ringnes ...

Recommended for you

Scientists solve mystery of unexplained 'bright nights'

June 21, 2017

Dating back to the first century, scientists, philosophers and reporters have noted the occasional occurrence of "bright nights," when an unexplained glow in the night sky lets observers see distant mountains, read a newspaper ...

New research leverages big data to predict severe weather

June 21, 2017

Every year, severe weather endangers millions of people and causes billions of dollars in damage worldwide. But new research from Penn State's College of Information Sciences and Technology (IST) and AccuWeather has found ...

Measuring biological dust in the wind

June 21, 2017

In the popular children's story "Horton Hears a Who!" author Dr. Seuss tells of a gentle and protective elephant who stumbles upon a speck of dust that harbors a community of microscopic creatures called the Whos living the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.