Scientists develop technique to observe radiation damage over a quadrillionth of a second

Scientists develop technique to observe radiation damage over a quadrillionth of a second
The comprehensive setup that NTU Assoc Prof Loh used, comprising a chirped mirror compressor to generate five-femtosecond laser pulses. This allows for the rapid observation of radiation damage on biological tissue. Credit: Nanyang Technological University

Scientists at Nanyang Technological University, Singapore (NTU Singapore) have developed a technique to observe how radiation damages molecules over time frames of just one quadrillionth of a second—or a femtosecond.

The technique involves dissolving organic molecules in water to simulate the state molecules are found in biological tissue. This allows the research team to see occur in biological tissue and molecules with greater precision and clarity than ever before.

Nuclear or ionizing can damage organisms by altering DNA and other biological molecules as it disintegrates the holding molecules together.

Using their new technique, the scientists watched the vibrations generated by collisions of ionizing radiation particles with an organic molecule, which eventually caused it to break apart after undergoing violent stretching, bending, and twisting motions. These vibrations only occurred when the molecules were dissolved in water, which represents a significant advance over previous studies.

Associate Professor Zhi-Heng Loh, an assistant chair at NTU's School of Physical & Mathematical Sciences who led the research, said, "This is the first time anyone has observed ionization-induced molecular dynamics in aqueous solutions on femtosecond time scales. In previous studies, scientists were only able to observe the products of ionization after the molecule had already been broken apart."

Although the hazards of radiation have been widely recognized since the 1930s, when Marie Curie died from anemia caused by her long-term exposure to radioactivity, the exact processes by which ionizing radiation alters molecules are still not completely understood.

The study used methods from femtochemistry to capture how atoms and molecules behave at ultra-short time scales, as in the formation or breaking of chemical bonds that take a few quadrillionths of a second, or femtoseconds.

Femtochemistry uses lasers that emit extremely brief pulses of light and each pulse creates a snapshot of the chemical reaction. These can then be stitched together like the frames of a video, to watch ultra-fast chemical processes from start to end.

Uncovering how radiation alters molecules

Associate Professor Loh and his team set out to understand how ionizing radiation affects biological molecules. As a starting point, they focused their attention on the phenoxide ion, a relatively simple organic molecule that contains many of the same types of chemical bonds that are found in the proteins that make up living tissue.

High-resolution spectroscopy had previously been used to study phenoxide in its gaseous form, and from it researchers had observed a relatively simple behavior: when struck by ionizing radiation, each phenoxide molecule vibrates at a single frequency, like a bell ringing in a single clear tone. However, this method could not be used to study dissolved in water, which is similar to the state molecules are found in biological tissue.

Using a pulsed-laser apparatus, the NTU team was able to record how radiation damages phenoxide molecules dissolved in water. The team identified multiple vibrational frequencies, distinct from the single frequency observed in gaseous phenoxide. They discovered that when radiation causes the molecules to eject an electron, the molecule vibrates in a highly complex pattern, more akin to the sound of a cymbal or gong than a ringing bell.

"In the future, we will build on this to investigate how radiation affects larger and more complicated molecules, such as proteins and , which are the building blocks of life," said Associate Professor Loh.

"Our research group specializes in femtochemistry, and once we got interested in the topic, it turned out to be relatively simple to adapt our femtochemistry methods to studying the vibrational motion of ionized dissolved in water. To our surprise, no one had ever tackled this particular problem before," he added.


Explore further

Chemotherapy drugs react differently to radiation while in water

More information: Tushar Debnath et al. Ultrafast structural rearrangement dynamics induced by the photodetachment of phenoxide in aqueous solution, Nature Communications (2019). DOI: 10.1038/s41467-019-10989-1
Journal information: Nature Communications

Citation: Scientists develop technique to observe radiation damage over a quadrillionth of a second (2019, September 19) retrieved 15 October 2019 from https://phys.org/news/2019-09-scientists-technique-quadrillionth.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
55 shares

Feedback to editors

User comments

Sep 20, 2019
Cumulative damage by radiation has been grossly exaggerated, as Chernobyl has shown us. They need to develop better tests.

Sep 20, 2019
Errrr, how exactly did Chernobyl show that cumulative radiation damage has been grossly exaggerated? And where did you hear this?

Sep 20, 2019
Errrr, how exactly did Chernobyl show that cumulative radiation damage has been grossly exaggerated? And where did you hear this?

Sep 20, 2019
Errrr, how exactly did Chernobyl show that cumulative radiation damage has been grossly exaggerated? And where did you hear this?

For example this natgeo article lightens it up a bit: https://www.natio...science/

In summary, radiation is bad but it's not as bad as many believe.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more