Related topics: rna

'Bilingual' molecule connects two basic codes for life

The nucleic acids of DNA encode genetic information, while the amino acids of proteins contain the code to turn that information into structures and functions. Together, they provide the two fundamental codes underlying all ...

Nanocontainer ships titan-size gene therapies and drugs into cells

Scientists at Johns Hopkins Medicine report they have created a tiny, nanosize container that can slip inside cells and deliver protein-based medicines and gene therapies of any size—even hefty ones attached to the gene-editing ...

DNA is only one among millions of possible genetic molecules

Biology encodes information in DNA and RNA, which are complex molecules finely tuned to their functions. But are they the only way to store hereditary molecular information? Some scientists believe life as we know it could ...

An easier way of sneaking antibodies into cells

For almost any conceivable protein, corresponding antibodies can be developed to block it from binding or changing shape, which ultimately prevents it from carrying out its normal function. As such, scientists have looked ...

Turning a dangerous toxin into a biosensor

Some types of bacteria have the ability to punch holes into other cells and kill them. They do this by releasing specialized proteins called "pore-forming toxins" (PFTs) that latch onto the cell's membrane and form a tube-like ...

Could young blood hold secrets to longer, healthier life?

In what sounds like a scene from a science fiction movie, researchers in 2005 stitched together old and young mice so they shared a circulatory system. Youthful blood seemingly rejuvenated many tissues of the elderly rodents, ...

page 1 from 19

Nucleic acid

A nucleic acid is a macromolecule composed of chains of monomeric nucleotides. In biochemistry these molecules carry genetic information or form structures within cells. The most common nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Nucleic acids are universal in living things, as they are found in all cells and viruses. Nucleic acids were first discovered by Friedrich Miescher in 1871.

Artificial nucleic acids include peptide nucleic acid (PNA), Morpholino and locked nucleic acid (LNA), as well as glycol nucleic acid (GNA) and threose nucleic acid (TNA). Each of these is distinguished from naturally-occurring DNA or RNA by changes to the backbone of the molecule.

This text uses material from Wikipedia, licensed under CC BY-SA