Dying bacteria absorb antibiotic, allowing others to survive and grow

February 6, 2019 by Molly Sharlach, Princeton University
Dying bacteria absorb antibiotic, allowing others to survive and grow
In a population of E. coli bacteria treated with a particular antimicrobial molecule (labeled in green), some dying cells absorb large amounts of the antibiotic, allowing their neighbors to survive and continue growing. This figure shows a time-lapse of bacterial growth over four hours. Credit: Beatrice Trinidad

Bacteria have multiple strategies to survive antibiotics: developing genetic resistance to the drugs; delaying their growth; or hiding in protective biofilms. New results from researchers at Princeton and California State University-Northridge (CSUN) have shed light on yet another approach: self-sacrifice.

In a population of E. coli bacteria treated with a particular antimicrobial molecule, the researchers found, some dying cells absorbed large amounts of the antibiotic, allowing their neighbors to survive and continue growing. The researchers created a modified, green fluorescent version of the antibiotic of interest, a peptide molecule known as LL37 that is naturally produced by , airways and other organs that frequently contact bacteria from the outside world. Tracking the glowing molecule's movements through a population of bacteria, as shown in the figure above, revealed that the antibiotic was accumulating in a subset of dying cells.

Andrej Košmrlj, an assistant professor of mechanical and aerospace engineering at Princeton, collaborated with the CSUN team to develop a to more fully explain the phenomenon and aid further investigations.

The model describes the dynamics of bacterial populations facing different concentrations of the antimicrobial, showing how dead cells sequester the dangerous molecule and predicting the delayed growth of surviving cells—calculations borne out by experiments in the laboratory of Sattar Taheri-Araghi, an assistant professor of physics at CSUN and co-senior author of the study along with Košmrlj.

"The model provided a physical explanation for how this actually works," said Košmrlj. "We had a surprising observation that the critical inhibitory concentration of antimicrobial peptides depends on the number of bacteria, and our was able to explain why this happens."

Despite this new understanding, questions remain about what is happening at the molecular level, said Taheri-Araghi. "This research opens the doors to a lot of questions that were never asked before. Our findings have for the evolution of —which have been around for billions of years—as well as in medicine for the design and administration of novel ."

The researchers reported their results in a paper published Dec. 18, 2018, in eLife.

Explore further: Low antibiotic concentration in the environment enough to increase antimicrobial resistance in laboratory conditions

More information: Mehdi Snoussi et al. Heterogeneous absorption of antimicrobial peptide LL37 in Escherichia coli cells enhances population survivability, eLife (2018). DOI: 10.7554/eLife.38174

Related Stories

Timing is key for bacteria surviving antibiotics

June 29, 2018

For bacteria facing a dose of antibiotics, timing might be the key to evading destruction. In a series of experiments, Princeton researchers found that cells that repaired DNA damaged by antibiotics before resuming growth ...

Recommended for you

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.