Simple yet powerful model predicts DNA organization

December 4, 2018 by Sofie Bates, Stanford University
Credit: CC0 Public Domain

Scientists often try to understand important processes in the cell by interfering and observing what happens. But often the cell just dies.

That was the problem that Andrew Spakowitz, associate professor of chemical engineering and and engineering at Stanford University, foresaw for scientists trying to understand how essential information in DNA is organized in our cells.

To get around this problem, Spakowitz and his team built a to manipulate "cells" in a simulation – without killing any real cells in the process. Their predicts how changes in the cell affect the way DNA gets packaged. This information will lay a foundation for other lab experiments to understand how DNA organization affects which genes are turned on or off.

"The question was if there's any hope of capturing essential behaviors in an undeniably complex living system with something as simple as our model," Spakowitz said. The answer, which they report in the Proceedings of the National Academy of Sciences, was a resounding yes.

Organizing the DNA

There's about six feet of DNA in each human cell. To fit all of it, long strands of DNA wind around protein clusters called histones. Genes in tightly-wound DNA, called , are often turned off because they are difficult for the cell to access.

The computer model shows regions of heterochromatin, which look like dense wads of string, and open regions called euchromatin – places where genes are often active. By looking at how DNA is packaged in the cell, the researchers can infer which genes are likely turned on or off.

"Establishing a connection between the physical organization of DNA and gene expression is an essential step in understanding how the cell controls which genes are expressed and which aren't," Spakowitz said.

To understand the factors that determine how DNA gets organized, Spakowitz and his team tweaked the "cells" in their computer model to see how certain changes would affect how DNA was packaged in the nucleus. For example, when they added more of a protein called HP1 that is involved in turning genes off, the DNA formed dense clumps. These regions also had histones marked with chemical groups that silence nearby genes.

A model for reality

To verify that their model works, the team compared the model's predictions to outcomes from real-world experiments. They analyzed data from lab experiments that freeze the cell at a specific moment in time, essentially taking a snapshot of how the DNA is organized. When the team simulated those experiments in the model, they saw the same results as they did in real cells.

"Just putting in one factor shows huge agreement between the simulated and experimental data," said Quinn MacPherson, a physics doctoral candidate in the Spakowitz lab. This told the team that its simple model could accurately predict how DNA would be organized in real .

Systematically changing things in a simulated cell would allow researchers to manipulate the DNA in experiments that would be infeasible at the lab bench. "These experiments could cost tens of thousands of dollars and countless hours in the lab, but we can just twiddle a knob on the computer," said Bruno Beltran, a biophysics doctoral candidate in the Spakowitz lab.

Running a simulated experiment before doing the benchwork could help researchers prioritize which to do. Spakowitz and his team hope their model will provide a guideline to inform others' research on how DNA organization affects which are turned on or off.

Explore further: Gene crowding affects cell development

More information: Quinn MacPherson et al. Bottom–up modeling of chromatin segregation due to epigenetic modifications, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1812268115

Related Stories

Gene crowding affects cell development

January 12, 2016

The crowding of genes inside the nucleus of a cell affects the way they replicate, and how they are turned on and off, according to a study led by the Liggins Institute at the University of Auckland.

The cartography of the nucleus

June 8, 2018

Nestled deep in each of your cells is what seems like a magic trick: Six feet of DNA is packaged into a tiny space 50 times smaller than the width of a human hair. Like a long, thin string of genetic spaghetti, this DNA blueprint ...

Organizing a cell's genetic material from the sidelines

June 28, 2018

A tremendous amount of genetic material must be packed into the nucleus of every cell—a tiny compartment. One of the biggest challenges in biology is to understand how certain regions of this highly packaged DNA can be ...

Mathematical model mimics melanoma

December 1, 2017

Cancer cells' ability to tolerate crowded conditions may be one key to understanding tumor growth and formation, according to a mathematical model that has been applied to cancer cell growth for the first time. The model ...

Uncovering a reversible master switch for development

November 13, 2017

In a paper published in Genes & Development, BWH principal investigator Mitzi Kuroda, PhD, and her team identified a reversible "master switch" on most developmental genes. The team unearthed this biological insight through ...

Recommended for you

After a reset, Сuriosity is operating normally

February 23, 2019

NASA's Curiosity rover is busy making new discoveries on Mars. The rover has been climbing Mount Sharp since 2014 and recently reached a clay region that may offer new clues about the ancient Martian environment's potential ...

Study: With Twitter, race of the messenger matters

February 23, 2019

When NFL player Colin Kaepernick took a knee during the national anthem to protest police brutality and racial injustice, the ensuing debate took traditional and social media by storm. University of Kansas researchers have ...

Solving the jet/cocoon riddle of a gravitational wave event

February 22, 2019

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.