Mathematical model mimics melanoma

December 1, 2017 by Sam Sholtis, Pennsylvania State University
Mathematical model mimics melanoma
Mathematical model mimics melanoma. Left: melanoma cells grown in culture with normal cells form clusters that resemble proto-tumors. Right: Simulations using a modified version of the Widom-Rowlinson model replicate patterns of melanoma cell growth seen in laboratory experiments by controlling the exclusion area -- the amount of space required -- around two types of simulated cells as they grow and spread. Credit: Penn State

Cancer cells' ability to tolerate crowded conditions may be one key to understanding tumor growth and formation, according to a mathematical model that has been applied to cancer cell growth for the first time. The model can replicate patterns of melanoma cell growth seen in laboratory experiments by controlling the 'exclusion area'—the amount of space required—around two types of simulated cells as they grow and spread. A paper describing the model and experiments appears in a recent issue of the journal Scientific Reports.

"When our collaborators grew melanoma in a mixed culture with normal ," said Yuri Suhov, professor of mathematics at Penn State and an author of the paper, "the cancer cells grew and spread more quickly, forming clusters of melanoma cells surrounded by non-cancer cells. This clustered pattern of melanoma cells resembled two-dimensional proto-tumors, so we were interested in modeling this pattern formation in order to understand what about the cancer cells allows them to grow in this way. Melanoma is a skin cancer of a relatively rare occurrence. However, it is one of most lethal forms of cancer characterized by a high potential for metastasis, which makes it crucial to understand the dynamics of the tumor growth and develop methods for early detection."

The researchers applied a modification of the Widom-Rowlinson model—a that has been used in contexts ranging from theoretical chemistry to sociology—to try to determine what factors explained the pattern of cell growth seen in the . Their model simulates the growth of two cell types that initially are evenly mixed and evenly spaced across a grid. By varying parameters of the model, the researchers can control the rate at which each cell type replicates, dies, and migrates, as well as the required exclusion area around the cells.

Mathematical model mimics melanoma
Simulated cancer cells (black) grow and form clusters surrounded by non-cancer cells (yellow) replicating experimental results. The simulations, based on a modification of the Widom-Rowlinson model, may give researchers clues to the factors that allow tumors to form. Credit: Penn State
"By altering the exclusion distance between the two cell types in the simulations, we were able to replicate the clustered patterns seen in the experiments," said Izabella Stuhl, visiting assistant professor in mathematics at Penn State and another author of the paper. "The cell type with the narrower exclusion area was more tolerant of dense conditions and formed patterns almost identical to the clusters of seen in the laboratory experiments. This suggests that a reduction in 'contact inhibition'—a known factor that stops cells from replicating when they bump into other cells—may be what allows tumors to form."

In the course of their work, the researchers first made predictions based on the mathematical model. Then numerical simulations were conducted, in parallel with the co-culture experiments. The simulated results were repeatedly compared with the experimental data.

The researchers plan to continue to expand their model in combination with data from real-world experiments in . This combination of theoretical modeling with laboratory experiments could lead to additional insights into the factors that contribute to cancer cell growth.

"Tumors grow in places where normal, healthy cells can't because the cells are already densely packed," said Suhov. "Contact inhibition, which we modeled as exclusion area, may be one of the things that prevents non-cancer cells from spreading uncontrollably, but cancer cells somehow overcome this. On the other hand, the try to form 'border layers', of a higher cell density, surrounding tumor-like clusters as if they wanted to isolate tumors and prevent them from spreading further. Our model shows that these factors are relevant when one tries to explain the images of seen in the laboratory. It is quite remarkable that the mixture of cells from unrelated biological sources shows a persistent pattern of behavior. However, we would like to expand this to gain a better understanding of how cells behave within a natural setting. As we continue to refine our based on additional experimental data, we may be able to build in parameters that allow us to better understand the precise biological processes that cause tumors to form."

Explore further: Combination immunotherapy targets cancer resistance

Related Stories

Combination immunotherapy targets cancer resistance

November 22, 2017

Cancer immunotherapy drugs have had notable but limited success because in many cases, tumors develop resistance to treatment. But researchers at Yale and Stanford have identified an experimental antibody that overcomes this ...

Cell senescence does not stop tumor growth

January 19, 2012

Since cancer cells grow indefinitely, it is commonly believed that senescence could act as a barrier against tumor growth and potentially be used as a way to treat cancer. A collaboration between a cancer biologist from the ...

Recommended for you

Frog choruses inspire wireless sensor networks

January 21, 2019

If you've ever camped by a pond, you know frogs make a racket at night; but what you might not know is how functional and regulated their choruses really are. Frogs communicate with sound, and amid their ruckus is an internally ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.