Illuminating nanoparticle growth with X-rays

December 26, 2018 by Stephanie Kossman, Brookhaven National Laboratory
Brookhaven Lab scientists Mingyuan Ge, Iradwikanari Waluyo, and Adrian Hunt are pictured left to right at the IOS beamline, where they studied the growth pathway of an efficient catalyst for hydrogen fuel cells. Credit: Brookhaven National Laboratory

Hydrogen fuel cells are a promising technology for producing clean and renewable energy, but the cost and activity of their cathode materials is a major challenge for commercialization. Many fuel cells require expensive platinum-based catalysts—substances that initiate and speed up chemical reactions—to help convert renewable fuels into electrical energy. To make hydrogen fuel cells commercially viable, scientists are searching for more affordable catalysts that provide the same efficiency as pure platinum.

"Like a battery, hydrogen fuel cells convert stored into electricity. The difference is that you're using a replenishable fuel so, in principle, that 'battery' would last forever," said Adrian Hunt, a scientist at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory. "Finding a cheap and effective for is basically the holy grail for making this technology more feasible."

Taking part in this worldwide search for cathode materials, researchers at the University of Akron developed a new method of synthesizing catalysts from a combination of metals—platinum and nickel—that form octahedral (eight-sided) shaped nanoparticles. While scientists have identified this catalyst as one of the most efficient replacements for pure platinum, they have not fully understood why it grows in an octahedral shape. To better understand the growth process, the researchers at the University of Akron collaborated with multiple institutions, including Brookhaven and its NSLS-II.

"Understanding how the faceted catalyst is formed plays a key role in establishing its structure-property correlation and designing a better catalyst," said Zhenmeng Peng, principal investigator of the catalysis lab at the University of Akron. "The case for the platinum-nickel system is quite sophisticated, so we collaborated with several experienced groups to address the challenges. The cutting-edge techniques at Brookhaven National Lab were of great help to study this research topic."

Using the ultrabright x-rays at NSLS-II and the advanced capabilities of NSLS-II's In situ and Operando Soft X-ray Spectroscopy (IOS) beamline, the researchers revealed the chemical characterization of the catalyst's growth pathway in real time. Their findings are published in Nature Communications.

"We used a research technique called ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface composition and chemical state of the metals in the nanoparticles during the growth reaction," said Iradwikanari Waluyo, lead scientist at IOS and a co-corresponding author of the research paper. "In this technique, we direct x-rays at a sample, which causes electrons to be released. By analyzing the energy of these electrons, we are able to distinguish the chemical elements in the sample, as well as their chemical and oxidation states."

Hunt, who is also an author on the paper, added, "It is similar to the way sunlight interacts with our clothing. Sunlight is roughly yellow, but once it hits a person's shirt, you can tell whether the shirt is blue, red, or green."

Rather than colors, the scientists were identifying chemical information on the surface of the catalyst and comparing it to its interior. They discovered that, during the growth reaction, metallic platinum forms first and becomes the core of the nanoparticles. Then, when the reaction reaches a slightly , platinum helps form metallic nickel, which later segregates to the surface of the nanoparticle. In the final stages of growth, the surface becomes roughly an equal mixture of the two metals. This interesting synergistic effect between platinum and nickel plays a significant role in the development of the nanoparticle's octahedral shape, as well as its reactivity.

"The nice thing about these findings is that nickel is a cheap material, whereas platinum is expensive," Hunt said. "So, if the nickel on the surface of the nanoparticle is catalyzing the reaction, and these nanoparticles are still more active than platinum by itself, then hopefully, with more research, we can figure out the minimum amount of platinum to add and still get the high activity, creating a more cost-effective catalyst."

The findings depended on the advanced capabilities of IOS, where the researchers were able to run the experiments at gas pressures higher than what is usually possible in conventional XPS experiments.

"At IOS, we were able to follow changes in the composition and chemical state of the nanoparticles in real time during the real growth conditions," said Waluyo.

Additional X-ray and electron imaging studies completed at the Advanced Photon Source (APS) at DOE's Argonne National Laboratory—another DOE Office of Science User Facility—and University of California-Irvine, respectively, complemented the work at NSLS-II.

"This fundamental work highlights the significant role of segregated nickel in forming the octahedral-shaped catalyst. We have achieved more insight into shape control of catalyst nanoparticles," Peng said. "Our next step is to study catalytic properties of the faceted nanoparticles to understand the structure-property correlation."

Explore further: Scientists maximize the effectiveness of platinum in fuel cells

More information: Xiaochen Shen et al, Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations, Nature Communications (2018). DOI: 10.1038/s41467-018-06900-z

Related Stories

Catalyst advance could lead to economical fuel cells

August 30, 2018

Researchers at Washington State University have developed a new way to make low-cost, single-atom catalysts for fuel cells—an advance that could make important clean energy technology more economically viable.

Single atoms break carbon's strongest bond

October 2, 2018

An international team of scientists including researchers at Yale University and the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have developed a new catalyst for breaking carbon-fluorine bonds, one of ...

Recommended for you

Researchers report breakthrough in ice-repelling materials

January 15, 2019

Icy weather is blamed for multibillion dollar losses every year in the United States, including delays and damage related to air travel, infrastructure and power generation and transmission facilities. Finding effective, ...

Research finds serious problems with forensic software

January 15, 2019

New research from North Carolina State University and the University of South Florida finds significant flaws in recently released forensic software designed to assess the age of individuals based on their skeletal remains. ...

The secret to Rembrandt's impasto unveiled

January 15, 2019

Impasto is thick paint laid on the canvas in an amount that makes it stand from the surface. The relief of impasto increases the perceptibility of the paint by increasing its light-reflecting textural properties. Scientists ...

Researchers gain control over soft-molecule synthesis

January 14, 2019

By gaining control over shape, size and composition during synthetic molecule assembly, researchers can begin to probe how these factors influence the function of soft materials. Finding these answers could help advance virology, ...

Marine bacterium sheds light on control of toxic metals

January 14, 2019

An ocean-dwelling bacterium has provided fresh insights into how cells protect themselves from the toxic effects of metal ions such as iron and copper, in research led by the University of East Anglia (UEA).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.