Related topics: energy · photosynthesis · fuel cell

Ammonia for fuel cells

Fuel cells are pollution-free power sources that convert chemical energy to electricity with high efficiency and zero emissions. Fuel cell cars, trucks, and buses would allow people to travel long distances with convenient ...

Supercapacitors turbocharged by laxatives

An international team of scientists, including a professor of chemistry from the University of Bristol, has worked out a way to improve energy storage devices called supercapacitors, by designing a new class of detergents ...

page 1 from 23

Chemical thermodynamics

Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the study of chemical questions and the spontaneity of processes.

The structure of chemical thermodynamics is based on the first two laws of thermodynamics. Starting from the first and second laws of thermodynamics, four equations called the "fundamental equations of Gibbs" can be derived. From these four, a multitude of equations, relating the thermodynamic properties of the thermodynamic system can be derived using relatively simple mathematics. This outlines the mathematical framework of chemical thermodynamics.

This text uses material from Wikipedia, licensed under CC BY-SA