Enzyme's unfrozen adventure: In crystallo protein thermodynamics

December 21, 2018, Osaka University
Non-cryocooled crystal mounted using the HAG method (A) and temperature-dependent equilibrium change of catalytic intermediates in copper amine oxidase (B). Credit: Osaka University

Enzymes—biocatalysts made of proteins—are hugely important molecules that catalyze the reactions and processes in living organisms. Ongoing work to understand their structures and reaction mechanisms is therefore vital to broaden our knowledge and contribute to scientific and medical advances.

X-ray crystallography—in which are exposed to an X-ray beam, resulting in specific diffraction patterns that can be analyzed—is the most widely-used technique for structural determination. Data collection in X-ray crystallography usually involves placing crystals under a cryogenic gas stream at 100 K; however, the cryogenic conditions do not generally allow for thermodynamic analysis of the conformational changes in the protein crystals. Now, researchers from Osaka University, Osaka Medical College, Japan Synchrotron Radiation Research Institute (JASRI), and RIKEN have reported the details of structural changes during the catalytic reaction of a copper amine oxidase using a non-cryogenic technique. Their findings were published in PNAS.

The study used a "humid air and glue-coating (HAG)" method developed by JASRI at the synchrotron facility SPring-8. Instead of cryogenic cooling, the unfrozen protein crystals were coated with a water-soluble polymer and placed under a stream of humid nitrogen gas with precisely-controlled temperature. This allowed the nearly bare crystal to remain stable enough for the team to assess the equilibrium between the structurally distinct conformations of the redox cofactor (an essential component of the catalytic reaction) at a particular temperature.

"As a result of the precise temperature control we were able to achieve, we demonstrated the first successful in crystallo thermodynamic analysis of the working enzyme," says study corresponding author Toshihide Okajima. "Thermodynamic analyses based on crystal measurements give a closer representation of the structural changes than data acquired from solution studies, and are therefore more valuable to our understanding."

In addition, the obtained thermodynamic parameters showed a behavior that was similar to that in cytosol within cells. It is therefore thought that the HAG conditions can provide a useful model for physiological conditions. Various other crystallographic techniques have been reported for use at ; however, they require specialized X-ray free lasers.

"By using the temperature-controlled HAG method, we have demonstrated that it is possible to acquire conformational information using a standard X-ray beam," Okajima explains. "We hope that the accessibility of the technique and its possibilities for providing thermodynamic information will make it an important addition to current crystallographic approaches."

Explore further: Electron crystallography found to work as well as X-ray crystallography only on smaller crystals

More information: Takeshi Murakawa et al, In crystallo thermodynamic analysis of conformational change of the topaquinone cofactor in bacterial copper amine oxidase, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1811837116

Related Stories

A greasy way to take better protein snapshots

November 10, 2014

Thanks to research performed at RIKEN's SACLA X-ray free electron laser facility in Japan, the dream of analyzing the structure of large, hard-to-crystallize proteins and other bio molecules has come one step closer to reality. ...

Five-dimensional crystallography probes molecular structure

November 26, 2013

(Phys.org) —Successful development of new pharmaceuticals could be the payoff from five-dimensional crystallography, a new experimental technique employed by researchers carrying out studies at the BioCARS facility at the ...

Crystals in a pink X-ray beam

November 3, 2017

A newly developed experimental set-up allows the X-ray structure determination of biomolecules such as proteins with far smaller samples and shorter exposure times than before. At so-called synchrotron sources, protein crystal ...

Recommended for you

3-D culturing hepatocytes on a liver-on-a-chip device

January 17, 2019

Liver-on-a-chip cell culture devices are attractive biomimetic models in drug discovery, toxicology and tissue engineering research. To maintain specific liver cell functions on a chip in the lab, adequate cell types and ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...

Cultivating 4-D tissues—the self-curving cornea

January 17, 2019

Scientists at Newcastle University have developed a biological system which lets cells form a desired shape by moulding their surrounding material—in the first instance creating a self-curving cornea.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.