Probing quantum physics on a macroscopic scale

November 30, 2018, Delft University of Technology
Credit: TU Delft

Why does quantum mechanics work so well for microscopic objects, yet macroscopic objects are described by classical physics? This question has bothered physicists since the development of quantum theory more than 100 years ago. Researchers at Delft University of Technology and the University of Vienna have now devised a macroscopic system that exhibits entanglement between mechanical phonons and optical photons. They tested the entanglement using a Bell test, one of the most convincing and important tests to show a system behaves non-classically.

Ever since its inception more than 100 years ago, physicists realized that might be in conflict with some of the basic axioms of classical physics. In particular, the principles in question are if information can be exchanged faster than the speed of light (called 'locality'), and whether physical quantities exist regardless of whether they are observed or not (called 'realism').Albert Einstein once famously asked Abraham Pais, his biographer, if he really thought the moon only existed when he looked at it.

A heated debate between Einstein and Niels Bohr on this conflict of axioms in the 1930s started decades long research on the correlations between . This phenomenon, called , quickly crystallized as one of the key predictions of quantum mechanics. Work by John Bell in the 1960s opened up a route to test these principles experimentally, which added new and exciting results to the debate. Most quantum experiments performed to date, however, deal with either one or a relatively small number of particles.

Quantum correlations

A team of scientists led by Prof. Simon Gröblacher from Delft University of Technology have now entered a completely new scale of quantum measurements. They created a device that yielded correlations between the vibrational motion of silicon optomechanical oscillators, comprising approximately 10 billion atoms, and optical modes. The devices were cooled to their motional ground states inside a dilution refrigerator and were then probed with . Specific laser frequencies are able to interact with the devices, either exciting the motion in a controlled fashion or reading out its state. Whenever this happens, correlations arise between the scattered light and the devices that make it possible to perfectly predict the behaviour of one of them by the other.

In order to test whether the correlations in their system were, in fact, quantum mechanics at work, and not , they performed a Bell test. The two particles were essentially presented with a choice: The experiment was devised in such a way that they could each be registered in one of two detectors. Both outcomes were equally likely by design, which made it impossible to predict the result for photons or phonons individually. However, due to the correlations between the two, the phonons could be made such that they always give a corresponding measurement result to the photons. In about 80 percent of the cases, they were found to behave that way, which is well above the classical Bell threshold of about 70 percent.

Thorough test

The real Bell test was to tweak certain experimental parameters that affect the two particles in different ways and see when this dependence breaks down. Quantum-mechanically, the two can maintain correlated measurement outcomes for much longer than what is classically allowed. "This is the most thorough test of a massive device behaving quantum mechanically yet performed," said Prof. Gröblacher.

These results imply that quantum mechanics extends up to the macroscopic domain. Moreover, the device the researchers fabricated can be enlarged and improved upon. Gröblacher: "As our experimental protocol is independent of the size of the oscillator, these results lay the foundation for the possibility of probing the boundary between classical and physics with arbitrarily large objects, even ones visible to the naked eye."

Explore further: Tracking down the mystery of entangled particles of light

More information: Igor Marinković*, Andreas Wallucks*, Ralf Riedinger, Sungkun Hong, Markus Aspelmeyer, and Simon Gröblacher, An optomechanical Bell test, Phys. Rev. Lett. 121, 220404 (2018). doi.org/10.1103/PhysRevLett.121.220404

Synopsis in Physics: physics.aps.org/synopsis-for/1 … ysRevLett.121.220404

Related Stories

Tracking down the mystery of entangled particles of light

June 14, 2018

Bernese researchers have taken an important step towards new measurement methods such as quantum spectroscopy. In an experiment, they succeeded in uncovering part of the mystery surrounding the so-called "entangled photons" ...

Bell correlations measured in half a million atoms

April 17, 2017

(Phys.org)—Physicists have demonstrated Bell correlations in the largest physical system to date—an ensemble of half a million atoms at an ultracold temperature of 25 µK. The presence of Bell correlations indicates that ...

How can you tell if a quantum memory is really quantum?

May 23, 2018

Quantum memories are devices that can store quantum information for a later time, which are usually implemented by storing and re-emitting photons with certain quantum states. But often it's difficult to tell whether a memory ...

Recommended for you

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

Stretched quantum magnetism uncovered by quantum simulation

December 13, 2018

By studying ultracold atoms trapped in artificial crystals of light, Guillaume Salomon, a postdoc at the Max-Planck-Institute of Quantum Optics and a team of scientists have been able to directly observe a fundamental effect ...

The secret life of cloud droplets

December 13, 2018

Do water droplets cluster inside clouds? Researchers confirm two decades of theory with an airborne imaging instrument.

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Phyllis Harmonic
5 / 5 (4) Nov 30, 2018
Pre-print is here: https://arxiv.org...06.10615

"We create a maximally entangled optomechanical Bell state between the collective vibrational motion of two silicon optomechanical oscillators, each comprising approx. 10^10 atoms, and two optical modes."

Pretty neat trick!
Da Schneib
3.4 / 5 (5) Nov 30, 2018
@Phyllis, check out the Fluctuation Theorem. It defines how entropy works more accurately than the Second Law of Thermodynamics, which is a classical law. You will find when all is said and done that this has intimate ties to entanglement.

As a teaser, entropy breaks entanglement.
JaxPavan
5 / 5 (2) Dec 01, 2018
Quantum entanglement at the macro level has so many exciting possibilities.

My favorite is that entanglement could solve the Fermi Paradox. We could just be looking for the wrong type of signal in the noise.
holoman
5 / 5 (1) Dec 01, 2018
Excellent work !!
Hyperfuzzy
not rated yet Dec 04, 2018
How many charges exists to create the wavelets per what distribution and driver? All gerry rigged, com'on!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.