When photons spice up the energy levels of quantum particles

June 19, 2018, Springer
Plots of the photon number distributions versus newly discovered coherent states. Credit: Springer

Quantum particles behave in mysterious ways. They are governed by laws of physics designed to reflect what is happening at smaller scales through quantum mechanics. Quantum state properties are generally very different to those of classical states. However, particles finding themselves in a coherent state are in a kind of quantum state which behaves like a classical state. Since their introduction by Erwin Schrödinger in 1926, coherent states of particles have found many applications in mathematical physics and quantum optics.

Now, for the first time, a team of mathematical physicists from Togo and Benin, call upon supersymmetry—a sub-discipline of —to explain the behaviour of particles that have received a photon. These particles are subjected to particular potential energies known as shape-invariant potentials.

In a paper published in EPJD, Komi Sodoga and colleagues affiliated with both the University of Lomé, Togo, and the University of Abomey-Calavi, in Cotonou, Benin, outline the details of their theory. These findings are relevant to scientists working on solving and mechanics applications.

The authors show that their new states are not distributed in a classical way. The way the number of photons is distributed is different from the distribution in conventional coherent states. Their work can be applied to all models satisfying shape invariance conditions for which an exact solution exists, such as three-dimensional harmonic oscillator, Coulomb or Morse potentials, etc.

Explore further: Researchers create a quantum entanglement between two physically separated ultra-cold atomic clouds

More information: Komi Sodoga et al, Photon-added coherent states for shape invariant systems, The European Physical Journal D (2018). DOI: 10.1140/epjd/e2018-80684-y

Related Stories

A new kind of quantum computer

November 6, 2017

Quantum mechanics incorporates some very non-intuitive properties of matter. Quantum superposition, for example, allows an atom to be simultaneously in two different states with its spin axis pointed both up and down, or ...

Researchers chart the 'secret' movement of quantum particles

December 22, 2017

Researchers from the University of Cambridge have taken a peek into the secretive domain of quantum mechanics. In a theoretical paper published in the journal Physical Review A, they have shown that the way that particles ...

A way to measure and control phonons

September 22, 2017

(Phys.org)—A team of researchers with the University of Vienna in Austria and Delft University of Technology in the Netherlands has developed a technique using photons for controlling and measuring phonons. In their paper ...

Experimental method measures robustness of quantum coherence

July 27, 2017

Researchers at the UAB have come up with a method to measure the strength of the superposition coherence in any given quantum state. The method, published in the journal Proceedings of the Royal Society A, is based on the ...

Recommended for you

Taking a close look at bacteria

October 23, 2018

Yong Wang, assistant professor of physics, and graduate student Asmaa Sadoon have been studying how molecules travel through bacterial cytoplasm in order to understand more about how these tiny organisms function. Using new ...

Researchers validate 80-year-old ferroelectric theory

October 23, 2018

Researchers have successfully demonstrated that hypothetical particles that were proposed by Franz Preisach in 1935 actually exist. In an article published in Nature Communications, scientists from the universities in Linköping ...

Understanding the building blocks for an electronic brain

October 22, 2018

Computer bits are binary, with a value of zero or one. By contrast, neurons in the brain can have many internal states, depending on the input that they receive. This allows the brain to process information in a more energy-efficient ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.