Metallic nanoparticles light up another path towards eco-friendly catalysts

November 16, 2018, Tokyo Institute of Technology
Each dendrimer molecule hosts a subnano-sized metallic particle that allows for the oxidation of aromatic hydrocarbons, such as toluene (left), to produce useful organic compounds, such as benzoic acid (right). Oxygen molecules are represented in red. Credit: Angewandte Chemie

Scientists at Tokyo Institute of Technology produced subnano-sized metallic particles that are as much as 50 times more effective than well-known Au-Pd bimetallic nanocatalysts.

The oxidation of aromatic hydrocarbons is critically important for producing a great variety of useful organic compounds. These oxidation processes require the use of catalysts and solvents, which are usually environmentally hazardous. Thus, finding a -free oxidation process using nanosized catalytic particles has attracted considerable attention.

Interestingly, sub-nanoscale catalytic particles (subnanocatalysts, or SNCs) composed of are even better at their job because their increased and unique electronic state results in favorable effects for oxidizing hydrocarbons and also prevents them from getting oxidized themselves. This makes them cost-effective because the amount of metal required for SNCs is lower than for nano-sized catalysts.

A team including Dr. Miftakhul Huda, Keigo Minamisawa, Dr. Takamasa Tsukamoto, and Dr. Makoto Tanabe at Tokyo Institute of Technology (Tokyo Tech), led by Prof. Kimihisa Yamamoto, created multiple types of SNCs by using dendrimers, which are tree-like spherical molecules that can be used as a template to contain the desired catalysts. "Dendrimers are expected to provide internal nanospaces that could be suitable for catalytic conversion in the presence of metal particles," explains Yamamoto .

The larger nanocatalysts and oxophilic SNCs become oxidized on their surface, which makes them less effective as catalysts for the oxidation of hydrocarbons over time. However, less oxophilic SNCs make them very effective and reusable catalysts. Credit: Angewandte Chemie

The team created catalysts of different sizes, depending on the noble metal used and the number of atoms of each catalytic particle. They compared their performance to find the best noble metal for making SNCs and then explored the mechanism behind their high catalytic activity. Smaller SNCs were found to be better, while less oxophilic metals (such as platinum) were superior. The team postulated that the surface of platinum SNCs does not oxidize easily, which makes them reusable. Pt19 SNC showed catalytic as high as 50 times more effective than the common Au-Pd nanocatalysts. The will continue working to shed light on these catalytic phenomena.

"The of a more detailed mechanism including theoretical considerations is currently in progress," says Tanabe. The applications of such catalysts could greatly contribute for reducing pollution and enhancing our effective use of Earth's metal resources.

(a) Less oxophilic platinum was superior to other noble metals in the aerobic toluene oxidation. (b) The Pt19 SNC was the highest catalytic performance among other Pt SNCs between 12 and 28 atoms. Credit: Angewandte Chemie

Explore further: Researchers create one-nanometer trimetallic alloy particles

More information: Kimihisa Yamamoto et al, Subnanocatalysis for Aerobic Oxidation: Toluene Oxidation with Oxygen using Subnano Metal Particles, Angewandte Chemie International Edition (2018). DOI: 10.1002/anie.201809530

Related Stories

Researchers create one-nanometer trimetallic alloy particles

August 1, 2017

The principal components of petroleum and natural gas are hydrocarbons and their mixtures, indispensable as resources supporting modern infrastructure as raw materials for the petrochemical industry. A technique conventionally ...

Interdisciplinary interactions inspire new discovery

November 8, 2018

Following an interdisciplinary approach, researchers in Japan have found new catalysts using unique Heusler alloys. Most studies on catalysts have been conducted by researchers in chemistry. However, catalysts also relate ...

Visualizing chemical reactions on bimetal surfaces

July 26, 2018

Catalysts are the result of chemists seeking to unravel the beauty of molecules and the mystery of chemical reactions. Professor Jeong Young Park, whose research focuses on catalytic chemical reactions, is no exception. His ...

Placing atoms for optimum catalysts

October 18, 2018

Fuels, plastics, and other products are made using catalysts, materials that drive chemical reactions. To design a better catalyst, scientists must get the right atoms in the right spot. Positioning the atoms can be difficult, ...

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.