Finding the proteins that unpack DNA

July 12, 2018, Pennsylvania State University
DNA (gray) is typically wrapped tightly around proteins called histones (colored) to form a nucleosome, a structure that condenses DNA strands to fit in a cell's nucleus. A new method allows scientists to identify specialized proteins called nucleosome-displacing factors that unwrap these nucleosomes, making the usually dense DNA more accessible for gene expression and other functions. Credit: Karolin Luger

A new method allows researchers to systematically identify specialized proteins that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions. The method, developed by a team of researchers at Penn State, and the shared characteristics of these proteins are described in a paper that appears online on July 12th in the journal Molecular Cell.

"Our genome is very compact, which means there is an accessibility issue," said Lu Bai, assistant professor of biochemistry and molecular biology and of physics at Penn State and senior author of the study. "A variety of proteins need to access DNA to copy its information into the RNA that will eventually be used to make proteins, but DNA is tightly wrapped around proteins called histones that are then packed into bead-like structures called nucleosomes. These tightly packed nucleosomes make it hard for other proteins to bind.

"To solve this problem, use what we call '-displacing factors' to invade the condensed DNA and open it up. Until this study, we lacked a general method to screen for these factors and evaluate them."

Nucleosome-displacing factors are a special kind of transcription factor, proteins that bind to short, specific sequences of DNA called binding sites to control . They are also known as pioneer factors in animal cells. The researchers developed a fast, inexpensive "high-throughput" method to screen and categorize large numbers of based on their ability to displace nucleosomes. The method artificially incorporates transcription factor binding sites into the nucleosomes and examines which factors are capable of reducing the presence of nucleosomes.

The researchers identified both new and previously known nucleosome-displacing factors. These factors, particularly those that strongly deplete nucleosomes, tend to be highly abundant in the nucleus and bind very tightly to DNA.

"We think some of these factors can physically compete with nucleosomes for locations on the DNA to bind," said Bai. "They may take advantage of the DNA replication process, when the nucleosome is temporarily disrupted and thus frees up some DNA. Because there are so many of these strong nucleosome-displacing factors in the cell, they immediately hop onto a binding site on the DNA and they refuse to dissociate. It's hard to assemble a nucleosome on top of that."

The researchers also identified some transcription factors that can displace nucleosomes without tapping into the DNA replication process.

"Even though we've known about some of these factors for decades, we still don't have the molecular details of how they work," said Bai. "In the future we hope to investigate, for example, which specific parts of these proteins may be important for nucleosome displacement."

In addition to identifying a suite of new nucleosome-displacing factors, this study provides a proof of concept of this screening method in the relatively simple system of yeast. The researchers plan to extend this method to more complex systems, such as mammals, and to different cell types and developmental stages.

"Pioneer factors are associated with the differentiation of cells into different, specialized cell types," said Bai. "If we can map out the key factors that are involved in cell type transitions, we may eventually be able to design a combination of transcription factors to artificially direct the fate of a cell. At least, that is the dream."

Explore further: Molecular biologists compared human and yeast FACT

More information: Molecular Cell (2018). DOI: 10.1016/j.molcel.2018.06.017

Related Stories

Molecular biologists compared human and yeast FACT

May 28, 2018

A protein complex called facilitates chromatin transcription (FACT) plays a role in DNA packing within a nucleus, as well as in oncogenesis. A team of scientists from MSU, working in cooperation with foreign colleagues, have ...

A new, dynamic view of chromatin movements

January 18, 2018

In cells, proteins tightly package the long thread of DNA into pearl necklace-like complexes known as chromatin. Scientists at EPFL show for the first time how chromatin moves, answering longstanding questions about how its ...

How a thieving transcription factor dominates the genome

June 20, 2018

One powerful DNA-binding protein, the transcription factor PU.1, steals away other transcription factors and recruits them for its own purposes, effectively dominating gene regulation in developing immune cells, according ...

Why some genes are highly expressed

November 5, 2015

The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter. However, these molecular beads, called ...

Recommended for you

Space-inspired speed breeding for crop improvement

November 16, 2018

Technology first used by NASA to grow plants extra-terrestrially is fast tracking improvements in a range of crops. Scientists at John Innes Centre and the University of Queensland have improved the technique, known as speed ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

BendBob
1 / 5 (1) Jul 12, 2018
Any chance someone can point me to where I can see the amino acid chain or paste into a reply?
torbjorn_b_g_larsson
not rated yet Jul 14, 2018
Any chance someone can point me to where I can see the amino acid chain or paste into a reply?


Start here: https://www.ncbi....BK44863/

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.