Sketching out a transcription factor code—binding patterns reflect factors' gene expression roles

July 11, 2018 by Tom Ulrich, Broad Institute of MIT and Harvard
Sketching out a transcription factor code—binding patterns reflect factors' gene expression roles
Credit: Susanna M. Hamilton, Broad Communications

The sites where transcription factors bind within regulatory DNA fall into six distinct patterns that overlap with the factors' functions, Broad scientists find, helping advance a goal of regulatory genomics.

The rules dictating how regulatory DNA elements called enhancers control ' expression remain murky, but it is clear that they act through specialized proteins called transcription factors (TFs). A group of Broad scientists has found that TFs' binding sites within enhancers cluster in distinct patterns reflecting the factors' roles in control.

These patterns, which may constitute a position-based code, could be a boon to researchers trying to learn how to predict enhancers' activities from sequence data alone.

The team, led by graduate student Sharon Grossman and institute director Eric Lander, reported their findings in PNAS.

TFs bind to enhancers (which oversee whole programs of gene expression) and other regulatory elements called promoters (from which gene transcription begins) at specific sequences called motifs. Once bound, these proteins perform a variety of jobs, from unraveling DNA to reading genes and writing RNA.

The Broad team surveyed 103 factors' motifs in 47 cell types, focusing on nucleosome-depleted regions (NDRs): stretches of unwound regulatory DNA where TFs can bind. When the team compared the motifs' locations, six distinct groups emerged, overlapping with the factors' known roles.

Motif clustering patterns within noncoding DNA. Click to see the full size image. Adapted from Grossman et al., PNAS 2018. Credit: Susanna M. Hamilton, Broad Communications

The groups were not evenly distributed across all of the NDRs the team examined. Rather, the team noted, certain groups consistently occurred together in all 47 . For instance, enhancers harboring group 4 motifs also contained more motifs from group 3 and fewer from groups 5 and 6—suggesting that different combinations of TFs may work with different kinds of enhancers.

The team's findings represent a new step toward a long-term goal: defining a model for predicting ' activities within a given cell type by looking at their DNA sequence. They open the door to additional insights into what constitutes an active, functional enhancer, as opposed to an inactive one.

Explore further: New insights into the epigenetic control of hematopoiesis

More information: Sharon R. Grossman et al. Positional specificity of different transcription factor classes within enhancers, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1804663115

Related Stories

New insights into the epigenetic control of hematopoiesis

June 28, 2018

Scientists at The Wistar Institute have characterized a novel function for the INTS13 protein that is part of a large protein complex regulating gene transcription, called Integrator. According to study results, published ...

Specific gene region in hypertension revealed

March 20, 2018

Genes encode proteins and proteins dictate cell function. Therefore, the thousands of genes expressed in a cell determine what that cell can do. Among the multiple elements that are involved in the precise regulation of gene ...

Rethinking transcription factors and gene expression

December 8, 2017

Transcription—the reading of a segment of DNA into an RNA template for protein synthesis—is fundamental for nearly all cellular processes, including growth, responding to stimuli, and reproduction. Now, Whitehead Institute ...

Recommended for you

High vinculin levels help keep aging fruit fly hearts young

July 17, 2018

Our cells tend to lose their shape as we grow older, contributing to many of the effects we experience as aging. This poses particular problems for the heart, where aging can disrupt the protein network within muscle cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.